Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY

Detalhes bibliográficos
Autor(a) principal: Lacerda,Luis H. da S.
Data de Publicação: 2016
Outros Autores: Lazaro,Sergio R. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Química Nova (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422016000300261
Resumo: ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
id SBQ-3_fec6a3f0867dbdc5d34ebfc1dcdb8c0b
oai_identifier_str oai:scielo:S0100-40422016000300261
network_acronym_str SBQ-3
network_name_str Química Nova (Online)
repository_id_str
spelling Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITYelectronic structuresemiconductorstheoreticalZnO:BadopingferroelectricityZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.Sociedade Brasileira de Química2016-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422016000300261Química Nova v.39 n.3 2016reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.5935/0100-4042.20160023info:eu-repo/semantics/openAccessLacerda,Luis H. da S.Lazaro,Sergio R. deeng2016-05-10T00:00:00Zoai:scielo:S0100-40422016000300261Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2016-05-10T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
title Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
spellingShingle Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
Lacerda,Luis H. da S.
electronic structure
semiconductors
theoretical
ZnO:Ba
doping
ferroelectricity
title_short Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
title_full Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
title_fullStr Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
title_full_unstemmed Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
title_sort Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
author Lacerda,Luis H. da S.
author_facet Lacerda,Luis H. da S.
Lazaro,Sergio R. de
author_role author
author2 Lazaro,Sergio R. de
author2_role author
dc.contributor.author.fl_str_mv Lacerda,Luis H. da S.
Lazaro,Sergio R. de
dc.subject.por.fl_str_mv electronic structure
semiconductors
theoretical
ZnO:Ba
doping
ferroelectricity
topic electronic structure
semiconductors
theoretical
ZnO:Ba
doping
ferroelectricity
description ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422016000300261
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422016000300261
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5935/0100-4042.20160023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Química Nova v.39 n.3 2016
reponame:Química Nova (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Química Nova (Online)
collection Química Nova (Online)
repository.name.fl_str_mv Química Nova (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv quimicanova@sbq.org.br
_version_ 1750318117459853312