The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies

Detalhes bibliográficos
Autor(a) principal: Rutter,Steven Mark
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Zootecnia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982007001000007
Resumo: Global Positioning System (GPS) satellite navigation receivers are increasingly being used in ecological and behavioural studies to track the movements of animals in relation to the environments in which they live and forage. Concurrent recording of the animal's foraging behaviour (e.g. from jaw movement recording) allows foraging locations to be determined. By combining the animal GPS movement and foraging data with habitat and vegetation maps using a Geographical Information System (GIS) it is possible to relate animal movement and foraging location to landscape and habitat features and vegetation types. This powerful approach is opening up new opportunities to study the spatial aspects of animal behaviour, especially foraging behaviour, with far greater precision and objectivity than before. Advances in GPS technology now mean that sub-metre precision systems can be used to track animals, extending the range of application of this technology from landscape and habitat scale to paddock and patch scale studies. As well as allowing ecological hypotheses to be empirically tested at the patch scale, the improvements in precision are also leading to the approach being increasing extended from large scale ecological studies to smaller (paddock) scale agricultural studies. The use of sub-metre systems brings both new scientific opportunities and new technological challenges. For example, fitting all of the animals in a group with sub-metre precision GPS receivers allows their relative inter-individual distances to be precisely calculated, and their relative orientations can be derived from data from a digital compass fitted to each receiver. These data, analyzed using GIS, could give new insights into the social behaviour of animals. However, the improvements in precision with which the animals are being tracked also needs equivalent improvements in the precision with which habitat and vegetation are mapped. This needs some degree of automation, as vegetation mapping at a fine spatial scale using the traditional manual approach is far too time consuming. This paper explores these issues, discussing new applications as well as approaches to overcoming some of the associated problems.
id SBZ-1_1a1f5d4f15d56f84301ce600d914f11d
oai_identifier_str oai:scielo:S1516-35982007001000007
network_acronym_str SBZ-1
network_name_str Revista Brasileira de Zootecnia (Online)
repository_id_str
spelling The integration of GPS, vegetation mapping and GIS in ecological and behavioural studiesGISGPSspatial behaviourvegetation mappingGlobal Positioning System (GPS) satellite navigation receivers are increasingly being used in ecological and behavioural studies to track the movements of animals in relation to the environments in which they live and forage. Concurrent recording of the animal's foraging behaviour (e.g. from jaw movement recording) allows foraging locations to be determined. By combining the animal GPS movement and foraging data with habitat and vegetation maps using a Geographical Information System (GIS) it is possible to relate animal movement and foraging location to landscape and habitat features and vegetation types. This powerful approach is opening up new opportunities to study the spatial aspects of animal behaviour, especially foraging behaviour, with far greater precision and objectivity than before. Advances in GPS technology now mean that sub-metre precision systems can be used to track animals, extending the range of application of this technology from landscape and habitat scale to paddock and patch scale studies. As well as allowing ecological hypotheses to be empirically tested at the patch scale, the improvements in precision are also leading to the approach being increasing extended from large scale ecological studies to smaller (paddock) scale agricultural studies. The use of sub-metre systems brings both new scientific opportunities and new technological challenges. For example, fitting all of the animals in a group with sub-metre precision GPS receivers allows their relative inter-individual distances to be precisely calculated, and their relative orientations can be derived from data from a digital compass fitted to each receiver. These data, analyzed using GIS, could give new insights into the social behaviour of animals. However, the improvements in precision with which the animals are being tracked also needs equivalent improvements in the precision with which habitat and vegetation are mapped. This needs some degree of automation, as vegetation mapping at a fine spatial scale using the traditional manual approach is far too time consuming. This paper explores these issues, discussing new applications as well as approaches to overcoming some of the associated problems.Sociedade Brasileira de Zootecnia2007-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982007001000007Revista Brasileira de Zootecnia v.36 suppl.0 2007reponame:Revista Brasileira de Zootecnia (Online)instname:Sociedade Brasileira de Zootecnia (SBZ)instacron:SBZ10.1590/S1516-35982007001000007info:eu-repo/semantics/openAccessRutter,Steven Markeng2008-08-05T00:00:00Zoai:scielo:S1516-35982007001000007Revistahttps://www.rbz.org.br/pt-br/https://old.scielo.br/oai/scielo-oai.php||bz@sbz.org.br|| secretariarbz@sbz.org.br1806-92901516-3598opendoar:2008-08-05T00:00Revista Brasileira de Zootecnia (Online) - Sociedade Brasileira de Zootecnia (SBZ)false
dc.title.none.fl_str_mv The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
title The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
spellingShingle The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
Rutter,Steven Mark
GIS
GPS
spatial behaviour
vegetation mapping
title_short The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
title_full The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
title_fullStr The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
title_full_unstemmed The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
title_sort The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
author Rutter,Steven Mark
author_facet Rutter,Steven Mark
author_role author
dc.contributor.author.fl_str_mv Rutter,Steven Mark
dc.subject.por.fl_str_mv GIS
GPS
spatial behaviour
vegetation mapping
topic GIS
GPS
spatial behaviour
vegetation mapping
description Global Positioning System (GPS) satellite navigation receivers are increasingly being used in ecological and behavioural studies to track the movements of animals in relation to the environments in which they live and forage. Concurrent recording of the animal's foraging behaviour (e.g. from jaw movement recording) allows foraging locations to be determined. By combining the animal GPS movement and foraging data with habitat and vegetation maps using a Geographical Information System (GIS) it is possible to relate animal movement and foraging location to landscape and habitat features and vegetation types. This powerful approach is opening up new opportunities to study the spatial aspects of animal behaviour, especially foraging behaviour, with far greater precision and objectivity than before. Advances in GPS technology now mean that sub-metre precision systems can be used to track animals, extending the range of application of this technology from landscape and habitat scale to paddock and patch scale studies. As well as allowing ecological hypotheses to be empirically tested at the patch scale, the improvements in precision are also leading to the approach being increasing extended from large scale ecological studies to smaller (paddock) scale agricultural studies. The use of sub-metre systems brings both new scientific opportunities and new technological challenges. For example, fitting all of the animals in a group with sub-metre precision GPS receivers allows their relative inter-individual distances to be precisely calculated, and their relative orientations can be derived from data from a digital compass fitted to each receiver. These data, analyzed using GIS, could give new insights into the social behaviour of animals. However, the improvements in precision with which the animals are being tracked also needs equivalent improvements in the precision with which habitat and vegetation are mapped. This needs some degree of automation, as vegetation mapping at a fine spatial scale using the traditional manual approach is far too time consuming. This paper explores these issues, discussing new applications as well as approaches to overcoming some of the associated problems.
publishDate 2007
dc.date.none.fl_str_mv 2007-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982007001000007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982007001000007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1516-35982007001000007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Zootecnia
publisher.none.fl_str_mv Sociedade Brasileira de Zootecnia
dc.source.none.fl_str_mv Revista Brasileira de Zootecnia v.36 suppl.0 2007
reponame:Revista Brasileira de Zootecnia (Online)
instname:Sociedade Brasileira de Zootecnia (SBZ)
instacron:SBZ
instname_str Sociedade Brasileira de Zootecnia (SBZ)
instacron_str SBZ
institution SBZ
reponame_str Revista Brasileira de Zootecnia (Online)
collection Revista Brasileira de Zootecnia (Online)
repository.name.fl_str_mv Revista Brasileira de Zootecnia (Online) - Sociedade Brasileira de Zootecnia (SBZ)
repository.mail.fl_str_mv ||bz@sbz.org.br|| secretariarbz@sbz.org.br
_version_ 1750318142043717632