Development and evaluation of models to estimate body chemical composition of young Nellore bulls

Detalhes bibliográficos
Autor(a) principal: Silva,Luiz Henrique Oliveira
Data de Publicação: 2017
Outros Autores: Bonilha,Sarah Figueiredo Martins, Branco,Renata Helena, Cyrillo,Joslaine Noely dos Santos Gonçalves, Mercadante,Maria Eugênia Zerlotti
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Zootecnia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982017000200156
Resumo: ABSTRACT The objective of this study was to develop accurate regression equations to predict body composition of Nellore cattle using chemical composition of the 9th, 10th, and 11th ribs and to evaluate the models proposed by analyzing mean and linear bias. Sixty-seven Nellore bulls were slaughtered and slaughter body weight (SBW), hot carcass weight (HCW), and 9th-, 10th-, and 11th-rib-cut weight (RCW) were measured. Empty body composition was obtained after grinding, homogenizing, sampling, chemical analysis, and pooling (blood, skin, head + feet, viscera, and carcass). Chemical components were determined in rib cut, carcass, and empty body: protein (RCP, HCP, and EBP), fat (RCF, HCF, and EBF), ash (RCA, HCA, and EBA), and water (RCWt, HCWt, and EBWt). Stepwise options were used to determine variables to be included and excluded from regressions. Predictive ability of equations was verified using standard error of prediction, coefficient of determination, and Cp statistic. Regression estimates were tested to evaluate the models in a database different from that used for equation development. The best equations found to predict carcass components, in kg, were: HCF = -0.994 + 0.123 × SBW - 9.201 × RCW + 34.249 × RCF (R² = 0.86) and HCWt = 2.733 - 0.172 × SBW + 0.821 × HCW - 23.939 × RCF + 12.186 × RCWt (R² = 0.96). For empty body, the best equations, in kg, were: EBF = -1.4 + 0.166 × SBW - 10.073 × RCW + 40.202 × RCF (R² = 0.90) and EBWt = 3.524 + 0.272 × SBW + 0.373 × HCW - 11.727 × RCW + 31.079 × RCWt (R² = 0.98). Body weight has a high predictive power and should be included in equations to estimate body composition of Nellore cattle. Unbiased models are valid as an indirect method for determining body composition in beef cattle.
id SBZ-1_8a1e89f015d02a185378bf74468c740d
oai_identifier_str oai:scielo:S1516-35982017000200156
network_acronym_str SBZ-1
network_name_str Revista Brasileira de Zootecnia (Online)
repository_id_str
spelling Development and evaluation of models to estimate body chemical composition of young Nellore bullsbeef cattlefeedlotindirect determinationABSTRACT The objective of this study was to develop accurate regression equations to predict body composition of Nellore cattle using chemical composition of the 9th, 10th, and 11th ribs and to evaluate the models proposed by analyzing mean and linear bias. Sixty-seven Nellore bulls were slaughtered and slaughter body weight (SBW), hot carcass weight (HCW), and 9th-, 10th-, and 11th-rib-cut weight (RCW) were measured. Empty body composition was obtained after grinding, homogenizing, sampling, chemical analysis, and pooling (blood, skin, head + feet, viscera, and carcass). Chemical components were determined in rib cut, carcass, and empty body: protein (RCP, HCP, and EBP), fat (RCF, HCF, and EBF), ash (RCA, HCA, and EBA), and water (RCWt, HCWt, and EBWt). Stepwise options were used to determine variables to be included and excluded from regressions. Predictive ability of equations was verified using standard error of prediction, coefficient of determination, and Cp statistic. Regression estimates were tested to evaluate the models in a database different from that used for equation development. The best equations found to predict carcass components, in kg, were: HCF = -0.994 + 0.123 × SBW - 9.201 × RCW + 34.249 × RCF (R² = 0.86) and HCWt = 2.733 - 0.172 × SBW + 0.821 × HCW - 23.939 × RCF + 12.186 × RCWt (R² = 0.96). For empty body, the best equations, in kg, were: EBF = -1.4 + 0.166 × SBW - 10.073 × RCW + 40.202 × RCF (R² = 0.90) and EBWt = 3.524 + 0.272 × SBW + 0.373 × HCW - 11.727 × RCW + 31.079 × RCWt (R² = 0.98). Body weight has a high predictive power and should be included in equations to estimate body composition of Nellore cattle. Unbiased models are valid as an indirect method for determining body composition in beef cattle.Sociedade Brasileira de Zootecnia2017-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982017000200156Revista Brasileira de Zootecnia v.46 n.2 2017reponame:Revista Brasileira de Zootecnia (Online)instname:Sociedade Brasileira de Zootecnia (SBZ)instacron:SBZ10.1590/s1806-92902017000200011info:eu-repo/semantics/openAccessSilva,Luiz Henrique OliveiraBonilha,Sarah Figueiredo MartinsBranco,Renata HelenaCyrillo,Joslaine Noely dos Santos GonçalvesMercadante,Maria Eugênia Zerlottieng2017-04-18T00:00:00Zoai:scielo:S1516-35982017000200156Revistahttps://www.rbz.org.br/pt-br/https://old.scielo.br/oai/scielo-oai.php||bz@sbz.org.br|| secretariarbz@sbz.org.br1806-92901516-3598opendoar:2017-04-18T00:00Revista Brasileira de Zootecnia (Online) - Sociedade Brasileira de Zootecnia (SBZ)false
dc.title.none.fl_str_mv Development and evaluation of models to estimate body chemical composition of young Nellore bulls
title Development and evaluation of models to estimate body chemical composition of young Nellore bulls
spellingShingle Development and evaluation of models to estimate body chemical composition of young Nellore bulls
Silva,Luiz Henrique Oliveira
beef cattle
feedlot
indirect determination
title_short Development and evaluation of models to estimate body chemical composition of young Nellore bulls
title_full Development and evaluation of models to estimate body chemical composition of young Nellore bulls
title_fullStr Development and evaluation of models to estimate body chemical composition of young Nellore bulls
title_full_unstemmed Development and evaluation of models to estimate body chemical composition of young Nellore bulls
title_sort Development and evaluation of models to estimate body chemical composition of young Nellore bulls
author Silva,Luiz Henrique Oliveira
author_facet Silva,Luiz Henrique Oliveira
Bonilha,Sarah Figueiredo Martins
Branco,Renata Helena
Cyrillo,Joslaine Noely dos Santos Gonçalves
Mercadante,Maria Eugênia Zerlotti
author_role author
author2 Bonilha,Sarah Figueiredo Martins
Branco,Renata Helena
Cyrillo,Joslaine Noely dos Santos Gonçalves
Mercadante,Maria Eugênia Zerlotti
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva,Luiz Henrique Oliveira
Bonilha,Sarah Figueiredo Martins
Branco,Renata Helena
Cyrillo,Joslaine Noely dos Santos Gonçalves
Mercadante,Maria Eugênia Zerlotti
dc.subject.por.fl_str_mv beef cattle
feedlot
indirect determination
topic beef cattle
feedlot
indirect determination
description ABSTRACT The objective of this study was to develop accurate regression equations to predict body composition of Nellore cattle using chemical composition of the 9th, 10th, and 11th ribs and to evaluate the models proposed by analyzing mean and linear bias. Sixty-seven Nellore bulls were slaughtered and slaughter body weight (SBW), hot carcass weight (HCW), and 9th-, 10th-, and 11th-rib-cut weight (RCW) were measured. Empty body composition was obtained after grinding, homogenizing, sampling, chemical analysis, and pooling (blood, skin, head + feet, viscera, and carcass). Chemical components were determined in rib cut, carcass, and empty body: protein (RCP, HCP, and EBP), fat (RCF, HCF, and EBF), ash (RCA, HCA, and EBA), and water (RCWt, HCWt, and EBWt). Stepwise options were used to determine variables to be included and excluded from regressions. Predictive ability of equations was verified using standard error of prediction, coefficient of determination, and Cp statistic. Regression estimates were tested to evaluate the models in a database different from that used for equation development. The best equations found to predict carcass components, in kg, were: HCF = -0.994 + 0.123 × SBW - 9.201 × RCW + 34.249 × RCF (R² = 0.86) and HCWt = 2.733 - 0.172 × SBW + 0.821 × HCW - 23.939 × RCF + 12.186 × RCWt (R² = 0.96). For empty body, the best equations, in kg, were: EBF = -1.4 + 0.166 × SBW - 10.073 × RCW + 40.202 × RCF (R² = 0.90) and EBWt = 3.524 + 0.272 × SBW + 0.373 × HCW - 11.727 × RCW + 31.079 × RCWt (R² = 0.98). Body weight has a high predictive power and should be included in equations to estimate body composition of Nellore cattle. Unbiased models are valid as an indirect method for determining body composition in beef cattle.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982017000200156
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982017000200156
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1806-92902017000200011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Zootecnia
publisher.none.fl_str_mv Sociedade Brasileira de Zootecnia
dc.source.none.fl_str_mv Revista Brasileira de Zootecnia v.46 n.2 2017
reponame:Revista Brasileira de Zootecnia (Online)
instname:Sociedade Brasileira de Zootecnia (SBZ)
instacron:SBZ
instname_str Sociedade Brasileira de Zootecnia (SBZ)
instacron_str SBZ
institution SBZ
reponame_str Revista Brasileira de Zootecnia (Online)
collection Revista Brasileira de Zootecnia (Online)
repository.name.fl_str_mv Revista Brasileira de Zootecnia (Online) - Sociedade Brasileira de Zootecnia (SBZ)
repository.mail.fl_str_mv ||bz@sbz.org.br|| secretariarbz@sbz.org.br
_version_ 1750318152248459264