Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos

Detalhes bibliográficos
Autor(a) principal: Costa, Alexandre
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/17412
Resumo: Azulene-based nanographene-like materials are predicted and studied to reveal the molecular properties of these new materials. C48H18/(G-48), C68H22/(G-68), and C88H26/(G-88) nanographenes and their isomers based on azulene molecule (azulphene) as A-48, A-68, and A-88 were studied to infer general properties for large azulphene systems. Nanotubes from azulphenes are also obtained and studied. The isoelectronic graphene and azulphene materials have significant differences concerning, e.g., electric dipole, aromaticity, bond length, and bond stress. In the present studies, it was used the Density Functional Theory (DFT) and including the version of Grimme´s D dispersion for the different spin multiplicities: singlet close-shell (CS) and open-shell (OS), triplet, and quintet. For example, the ground-state of A-(48-68-88) structures is a singlet. The UV-visible spectra of all compounds exhibit maximum absorption peaks attributed to the electronic transition π→π*. The IR spectrum of G-88 and A-88 shows an intense set of absorption peaks in the range [600:1700 cm-1]. The following IR frequencies could be used as an indicator of azulphene structures: 1124, 1162, 1436, 1542, and 1597 cm-1. The azulphene sheets have a non-uniform distribution of the electron density, unlike graphene systems, which makes them promising candidates for regioselective chemical modification. The nucleus independent chemical shift calculations show that the five-membered rings are aromatic, and the seven-membered rings are anti-aromatic similar to azulene molecule. Our study also showed that smaller diameter tubes based on azulene (C57NTs) might be more stable than their conventional C6NTs isomer. The geometries, the electronic structures and the aromaticity of the [n]-azulene and [n]-naphthalene polymers were studied, by using the Density Functional Theory (DFT) and the Møller–Plesset (MP2) Pertubation Theory, for the different multiplicities (M=2S+1): singlet (S=0, closed and open shell), triplet (S=1) and quintet (S=2). The ground-states of the [n]-azulene polymers were a singlet (closed shell) for any values of n (n≤10). The ground-states of the [n]-naphthalene polymers were a singlet (closed shell) for n≤6 and triplet for 7≤n≤10. The electric dipole moment of the odd [n]-azulene polymers varied with the length of the polymer chain, while exhibiting a local minimum for [5]-azulene. The dipole of the even [n]-azulene and the (even and odd) [n]-naphthalene polymers were null by symmetry, essentially as a result of the non-polar structure of the azulene dimer and the benzene molecule. The [n]-azulene polymers could be considered as semiconductors, since for the large chain, the HOMO-LUMO gap was estimated at 0.70 eV. The large naphthalene polymers perhaps reached zero gaps. All of the polymers had electronic transition peaks in the visible region and their maximum was red-shifted for the increasing chains. The nucleus independent chemical shift (NICS) calculations have shown that ring tension was an important factor in the aromaticity loss, as shown, for example, for the flat, the cycle, and the Möbius strip [20]-polymers. The Aromatic Stabilization Energies (ASEs) that were based on the homodesmotic and isodesmic reactions were also obtained.
id SCAR_005c9fbef2d9c28be4b4424dc3871016
oai_identifier_str oai:repositorio.ufscar.br:ufscar/17412
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Costa, AlexandreLopez Castillo, Alejandrohttp://lattes.cnpq.br/2599181118729458http://lattes.cnpq.br/48114454693851188caca54f-4ef9-44f1-a7de-2909548c55bc2023-02-24T11:19:31Z2023-02-24T11:19:31Z2020-08-03COSTA, Alexandre. Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos. 2020. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17412.https://repositorio.ufscar.br/handle/ufscar/17412Azulene-based nanographene-like materials are predicted and studied to reveal the molecular properties of these new materials. C48H18/(G-48), C68H22/(G-68), and C88H26/(G-88) nanographenes and their isomers based on azulene molecule (azulphene) as A-48, A-68, and A-88 were studied to infer general properties for large azulphene systems. Nanotubes from azulphenes are also obtained and studied. The isoelectronic graphene and azulphene materials have significant differences concerning, e.g., electric dipole, aromaticity, bond length, and bond stress. In the present studies, it was used the Density Functional Theory (DFT) and including the version of Grimme´s D dispersion for the different spin multiplicities: singlet close-shell (CS) and open-shell (OS), triplet, and quintet. For example, the ground-state of A-(48-68-88) structures is a singlet. The UV-visible spectra of all compounds exhibit maximum absorption peaks attributed to the electronic transition π→π*. The IR spectrum of G-88 and A-88 shows an intense set of absorption peaks in the range [600:1700 cm-1]. The following IR frequencies could be used as an indicator of azulphene structures: 1124, 1162, 1436, 1542, and 1597 cm-1. The azulphene sheets have a non-uniform distribution of the electron density, unlike graphene systems, which makes them promising candidates for regioselective chemical modification. The nucleus independent chemical shift calculations show that the five-membered rings are aromatic, and the seven-membered rings are anti-aromatic similar to azulene molecule. Our study also showed that smaller diameter tubes based on azulene (C57NTs) might be more stable than their conventional C6NTs isomer. The geometries, the electronic structures and the aromaticity of the [n]-azulene and [n]-naphthalene polymers were studied, by using the Density Functional Theory (DFT) and the Møller–Plesset (MP2) Pertubation Theory, for the different multiplicities (M=2S+1): singlet (S=0, closed and open shell), triplet (S=1) and quintet (S=2). The ground-states of the [n]-azulene polymers were a singlet (closed shell) for any values of n (n≤10). The ground-states of the [n]-naphthalene polymers were a singlet (closed shell) for n≤6 and triplet for 7≤n≤10. The electric dipole moment of the odd [n]-azulene polymers varied with the length of the polymer chain, while exhibiting a local minimum for [5]-azulene. The dipole of the even [n]-azulene and the (even and odd) [n]-naphthalene polymers were null by symmetry, essentially as a result of the non-polar structure of the azulene dimer and the benzene molecule. The [n]-azulene polymers could be considered as semiconductors, since for the large chain, the HOMO-LUMO gap was estimated at 0.70 eV. The large naphthalene polymers perhaps reached zero gaps. All of the polymers had electronic transition peaks in the visible region and their maximum was red-shifted for the increasing chains. The nucleus independent chemical shift (NICS) calculations have shown that ring tension was an important factor in the aromaticity loss, as shown, for example, for the flat, the cycle, and the Möbius strip [20]-polymers. The Aromatic Stabilization Energies (ASEs) that were based on the homodesmotic and isodesmic reactions were also obtained.Os materiais do tipo nanografeno à base de azuleno são previstos e estudados para revelar as propriedades moleculares desses novos materiais. Foram estudados os nanografenos C48H18/(G-48),C68H22 /(G-68) e C88H26/(G-88) e seus isômeros baseados na molécula de azuleno (azulfeno) como A-48, A-68 e A-88 afim de inferir propriedades gerais para sistemas maiores de azulfeno. Nanotubos de azulfenos também foram obtidos e estudados. Os materiais isoeletrônicos de grafeno e azulfeno apresentam diferenças significativas em relação, por exemplo, dipolo elétrico, aromaticidade, comprimento da ligação e tensão da ligação. Nos presentes estudos, utilizou-se a Teoria Funcional da Densidade (DFT) e incluiu a versão da dispersão de Grimme para as diferentes multiplicidades de spin: singleto camada fechada (CS) e camada aberta (OS), tripleto e quinteto. Por exemplo, o estado fundamental das estruturas A-(48-68-88) foram singleto. Os espectros UV-vis de todos os compostos exibem picos máximos de absorção atribuídos à transição eletrônica π → π *. O espectro de IR dos G-88 e A-88 mostra um conjunto intenso de picos de absorção no intervalo [600: 1700 cm-1]. As seguintes frequências de IV podem ser usadas como um indicador das estruturas de azulfeno: 1124, 1162, 1436, 1542 e 1597 cm-1. As folhas de azulfeno têm uma distribuição não uniforme da densidade de elétrons, diferentemente dos sistemas de grafeno, o que os torna candidatos promissores à modificação química regioseletiva. Os cálculos de deslocamento químico independente do núcleo mostram que os anéis de cinco membros são aromáticos e os anéis de sete membros são anti-aromáticos semelhantes à molécula de azuleno. Nosso estudo também mostrou que tubos de menor diâmetro à base de azuleno (C57NTs) podem ser mais estáveis do que seu isômero C6NTs convencional. As geometrias, as estruturas eletrônicas e a aromaticidade dos polímeros [n] -azuleno e [n]-naftaleno foram estudadas usando a Teoria Funcional da Densidade (DFT) e a Teoria da Pertubação de Møller – Plesset (MP2), para as diferentes multiplicidades (M =2S+1): singleto (S=0, camada fechada e aberta), tripleto (S=1) e quinteto (S=2). Os estados fundamentais dos polímeros [n]-azuleno foram um singleto (camada fechada) para quaisquer valores de n (n≤10). Os estados fundamentais dos polímeros de [n]-naftaleno foram um singleto (camada fechado) para n≤6 e tripleto para 7≤n≤10. O momento dipolo elétrico dos polímeros ímpares de [n]-azuleno variou com o comprimento da cadeia polimérica, enquanto exibia um mínimo local para [5]-azuleno. O dipolo do polímero [n]-azuleno par e dos polímeros [n]-naftaleno (pares e ímpares) foram nulo por simetria, essencialmente como resultado da estrutura não polar do dímero de azuleno e da molécula de benzeno. Os polímeros de [n]-azuleno podem ser considerados semicondutores, uma vez que para uma cadeia maior o gap HOMO-LUMO foi estimado em 0,70 eV. Os polímeros maiores de naftaleno talvez atingem gaps zero. Todos os polímeros têm picos de transição eletrônica na região visível e seu máximo foi desviado para o vermelho para as cadeias maiores. Os cálculos do deslocamento químico independente do núcleo (NICS) mostraram que a tensão do anel foi um fator importante na perda da aromaticidade, como mostrado, por exemplo, para os polímeros planos, ciclo e da fita de Möbius [20]. As Energias de Estabilização Aromáticas de (ASEs) que foram baseadas nas reações homodesmóticas e isodósmicas também foram obtidas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CAPES: Código de financiamento 0012010/11385-2 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPoliazulenosPolinaftalenosGrafenoNanotubos de carbonoDefeitos de Stone-WalesAromaticidadePolyazulenesPolynaphthalenesGrapheneCarbon nanotubesStone–Wales DefectsAromaticityCIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::QUIMICA TEORICAEstudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenosTheoretical study of nano azulene systems: azulphenes, ANTs, polyazulenes and polynaphthalenesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006002520bcd6-cefe-47ca-a15c-91733b260036reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_23_02_2023.pdfTese_23_02_2023.pdfTese Finalapplication/pdf3647348https://repositorio.ufscar.br/bitstream/ufscar/17412/1/Tese_23_02_2023.pdff0d513c1ed05a588c878b1e19b8ea514MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstream/ufscar/17412/2/license_rdff337d95da1fce0a22c77480e5e9a7aecMD52TEXTTese_23_02_2023.pdf.txtTese_23_02_2023.pdf.txtExtracted texttext/plain343351https://repositorio.ufscar.br/bitstream/ufscar/17412/3/Tese_23_02_2023.pdf.txt01d2f7508ffd727f5bb289eff0aa83d2MD53THUMBNAILTese_23_02_2023.pdf.jpgTese_23_02_2023.pdf.jpgIM Thumbnailimage/jpeg9085https://repositorio.ufscar.br/bitstream/ufscar/17412/4/Tese_23_02_2023.pdf.jpga4c28f38a295f4a6ad8c558f176b4732MD54ufscar/174122023-09-18 18:32:32.663oai:repositorio.ufscar.br:ufscar/17412Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:32Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
dc.title.alternative.eng.fl_str_mv Theoretical study of nano azulene systems: azulphenes, ANTs, polyazulenes and polynaphthalenes
title Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
spellingShingle Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
Costa, Alexandre
Poliazulenos
Polinaftalenos
Grafeno
Nanotubos de carbono
Defeitos de Stone-Wales
Aromaticidade
Polyazulenes
Polynaphthalenes
Graphene
Carbon nanotubes
Stone–Wales Defects
Aromaticity
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::QUIMICA TEORICA
title_short Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
title_full Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
title_fullStr Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
title_full_unstemmed Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
title_sort Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos
author Costa, Alexandre
author_facet Costa, Alexandre
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4811445469385118
dc.contributor.author.fl_str_mv Costa, Alexandre
dc.contributor.advisor1.fl_str_mv Lopez Castillo, Alejandro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2599181118729458
dc.contributor.authorID.fl_str_mv 8caca54f-4ef9-44f1-a7de-2909548c55bc
contributor_str_mv Lopez Castillo, Alejandro
dc.subject.por.fl_str_mv Poliazulenos
Polinaftalenos
Grafeno
Nanotubos de carbono
Defeitos de Stone-Wales
Aromaticidade
topic Poliazulenos
Polinaftalenos
Grafeno
Nanotubos de carbono
Defeitos de Stone-Wales
Aromaticidade
Polyazulenes
Polynaphthalenes
Graphene
Carbon nanotubes
Stone–Wales Defects
Aromaticity
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::QUIMICA TEORICA
dc.subject.eng.fl_str_mv Polyazulenes
Polynaphthalenes
Graphene
Carbon nanotubes
Stone–Wales Defects
Aromaticity
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::QUIMICA TEORICA
description Azulene-based nanographene-like materials are predicted and studied to reveal the molecular properties of these new materials. C48H18/(G-48), C68H22/(G-68), and C88H26/(G-88) nanographenes and their isomers based on azulene molecule (azulphene) as A-48, A-68, and A-88 were studied to infer general properties for large azulphene systems. Nanotubes from azulphenes are also obtained and studied. The isoelectronic graphene and azulphene materials have significant differences concerning, e.g., electric dipole, aromaticity, bond length, and bond stress. In the present studies, it was used the Density Functional Theory (DFT) and including the version of Grimme´s D dispersion for the different spin multiplicities: singlet close-shell (CS) and open-shell (OS), triplet, and quintet. For example, the ground-state of A-(48-68-88) structures is a singlet. The UV-visible spectra of all compounds exhibit maximum absorption peaks attributed to the electronic transition π→π*. The IR spectrum of G-88 and A-88 shows an intense set of absorption peaks in the range [600:1700 cm-1]. The following IR frequencies could be used as an indicator of azulphene structures: 1124, 1162, 1436, 1542, and 1597 cm-1. The azulphene sheets have a non-uniform distribution of the electron density, unlike graphene systems, which makes them promising candidates for regioselective chemical modification. The nucleus independent chemical shift calculations show that the five-membered rings are aromatic, and the seven-membered rings are anti-aromatic similar to azulene molecule. Our study also showed that smaller diameter tubes based on azulene (C57NTs) might be more stable than their conventional C6NTs isomer. The geometries, the electronic structures and the aromaticity of the [n]-azulene and [n]-naphthalene polymers were studied, by using the Density Functional Theory (DFT) and the Møller–Plesset (MP2) Pertubation Theory, for the different multiplicities (M=2S+1): singlet (S=0, closed and open shell), triplet (S=1) and quintet (S=2). The ground-states of the [n]-azulene polymers were a singlet (closed shell) for any values of n (n≤10). The ground-states of the [n]-naphthalene polymers were a singlet (closed shell) for n≤6 and triplet for 7≤n≤10. The electric dipole moment of the odd [n]-azulene polymers varied with the length of the polymer chain, while exhibiting a local minimum for [5]-azulene. The dipole of the even [n]-azulene and the (even and odd) [n]-naphthalene polymers were null by symmetry, essentially as a result of the non-polar structure of the azulene dimer and the benzene molecule. The [n]-azulene polymers could be considered as semiconductors, since for the large chain, the HOMO-LUMO gap was estimated at 0.70 eV. The large naphthalene polymers perhaps reached zero gaps. All of the polymers had electronic transition peaks in the visible region and their maximum was red-shifted for the increasing chains. The nucleus independent chemical shift (NICS) calculations have shown that ring tension was an important factor in the aromaticity loss, as shown, for example, for the flat, the cycle, and the Möbius strip [20]-polymers. The Aromatic Stabilization Energies (ASEs) that were based on the homodesmotic and isodesmic reactions were also obtained.
publishDate 2020
dc.date.issued.fl_str_mv 2020-08-03
dc.date.accessioned.fl_str_mv 2023-02-24T11:19:31Z
dc.date.available.fl_str_mv 2023-02-24T11:19:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, Alexandre. Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos. 2020. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17412.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/17412
identifier_str_mv COSTA, Alexandre. Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos. 2020. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17412.
url https://repositorio.ufscar.br/handle/ufscar/17412
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 2520bcd6-cefe-47ca-a15c-91733b260036
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/17412/1/Tese_23_02_2023.pdf
https://repositorio.ufscar.br/bitstream/ufscar/17412/2/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/17412/3/Tese_23_02_2023.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/17412/4/Tese_23_02_2023.pdf.jpg
bitstream.checksum.fl_str_mv f0d513c1ed05a588c878b1e19b8ea514
f337d95da1fce0a22c77480e5e9a7aec
01d2f7508ffd727f5bb289eff0aa83d2
a4c28f38a295f4a6ad8c558f176b4732
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715659619565568