Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7483 |
Resumo: | The CO oxidation is considered one of the most studied reactions in heterogeneous catalysis. Although several studies have been developed in this field, the impact of some properties of catalysts, such as the oxygen mobility, the number of active sites and the preferential exposure of surface facets, on their catalytic performance remains unclear. To progress in the understanding of this area, in the present study nanostructures with controlled size, geometry and morphology dispersed in oxides were applied to investigate two independent effects on the CO oxidation: (i) the effect of the nature of oxides (SiO2, TiO2, CeO2 and Al2O3) as support for AgPt nanoshells displaying rough surfaces (NCR); and (ii) the effect of the morphology of AgPt nanoshells displaying smooth (NCL) or rough (NCR) surfaces, and nanotubes displaying smooth (NTL) or rough (NTR) surfaces. More specifically, was investigated (i) how the mobility of the structural oxygen affects the catalytic performance; and (ii) how the number of Pt active sites and the nature of exposed surface facets influence the CO oxidation on nanostructures displaying controlled surface morphology (smooth or rough surfaces), shape (spherical or one-dimensional), size, and chemical composition. In the first study, the catalytic performance decreased in the following order: NCR/CeO2 > NCR/TiO2 > NCR/Al2O3 ≈ NCR/SiO2. The formation of oxygen vacancies, the reducibility of the oxides and the oxygen storage capacity (OSC) were investigated by Raman spectroscopy, temperature-programmed reduction and OSC technique, respectively. The catalytic performances were related with the mobility of the structural oxygen. The result observed for the NCR/TiO2 catalyst was associated with the presence of oxidized species, which are capable to perform the redox process, after the deposition of NCR on the TiO2. These species were not observed for the NCR/Al2O3 and NCR/SiO2 catalysts. In this study, the best result observed for the NCR/CeO2 catalyst was associated with the strong metal-support interaction between NCR and CeO2, resulting in the most pronounced structural oxygen mobility for the NCR/CeO2 catalyst in comparison with the other materials. These results attest the strong dependence of the catalytic performance on the mobility of the structural oxygen, which is promoted by metal-support interactions. In the second study, the catalytic performance decreased in the following order: NTL/SiO2 > NTR/SiO2 ≈ NCL/SiO2 > NCR/SiO2. The better catalytic activity observed with the NCL/SiO2 relative to that of the NCR/SiO2 was associated with its higher number of Pt active sites (~ 3 times higher). The better result observed with the NTL/SiO2 relative to that of the NTR/SiO2 was related with the preferential exposure of {100} facets, which are more active towards the CO oxidation than {111} and {110} facets. Interestingly, the NTL/SiO2 also displayed higher catalytic activity when compared to that of the NCL/SiO2, which presents similar amount of Pt surface atoms. This result indicates that the preferential exposure of {100} facets can be more effective with respect to the number of active sites. In this way, in Pt-based materials, the preferential exposure of {100} facets may play a significant role in the optimization of the catalytic performance for CO oxidation. |
id |
SCAR_02c5d00aeeef403d811e74987e4fe9f4 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7483 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Silva, Alisson Henrique Marques daAssaf, José Mansurhttp://lattes.cnpq.br/9563312407691130Gomes, Janaina Fernandeshttp://lattes.cnpq.br/6718634914051168http://lattes.cnpq.br/76961325002557796f3da590-4a2a-4f21-ba13-77519dd4aa692016-09-27T17:28:52Z2016-09-27T17:28:52Z2016-03-10SILVA, Alisson Henrique Marques da. Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7483.https://repositorio.ufscar.br/handle/ufscar/7483The CO oxidation is considered one of the most studied reactions in heterogeneous catalysis. Although several studies have been developed in this field, the impact of some properties of catalysts, such as the oxygen mobility, the number of active sites and the preferential exposure of surface facets, on their catalytic performance remains unclear. To progress in the understanding of this area, in the present study nanostructures with controlled size, geometry and morphology dispersed in oxides were applied to investigate two independent effects on the CO oxidation: (i) the effect of the nature of oxides (SiO2, TiO2, CeO2 and Al2O3) as support for AgPt nanoshells displaying rough surfaces (NCR); and (ii) the effect of the morphology of AgPt nanoshells displaying smooth (NCL) or rough (NCR) surfaces, and nanotubes displaying smooth (NTL) or rough (NTR) surfaces. More specifically, was investigated (i) how the mobility of the structural oxygen affects the catalytic performance; and (ii) how the number of Pt active sites and the nature of exposed surface facets influence the CO oxidation on nanostructures displaying controlled surface morphology (smooth or rough surfaces), shape (spherical or one-dimensional), size, and chemical composition. In the first study, the catalytic performance decreased in the following order: NCR/CeO2 > NCR/TiO2 > NCR/Al2O3 ≈ NCR/SiO2. The formation of oxygen vacancies, the reducibility of the oxides and the oxygen storage capacity (OSC) were investigated by Raman spectroscopy, temperature-programmed reduction and OSC technique, respectively. The catalytic performances were related with the mobility of the structural oxygen. The result observed for the NCR/TiO2 catalyst was associated with the presence of oxidized species, which are capable to perform the redox process, after the deposition of NCR on the TiO2. These species were not observed for the NCR/Al2O3 and NCR/SiO2 catalysts. In this study, the best result observed for the NCR/CeO2 catalyst was associated with the strong metal-support interaction between NCR and CeO2, resulting in the most pronounced structural oxygen mobility for the NCR/CeO2 catalyst in comparison with the other materials. These results attest the strong dependence of the catalytic performance on the mobility of the structural oxygen, which is promoted by metal-support interactions. In the second study, the catalytic performance decreased in the following order: NTL/SiO2 > NTR/SiO2 ≈ NCL/SiO2 > NCR/SiO2. The better catalytic activity observed with the NCL/SiO2 relative to that of the NCR/SiO2 was associated with its higher number of Pt active sites (~ 3 times higher). The better result observed with the NTL/SiO2 relative to that of the NTR/SiO2 was related with the preferential exposure of {100} facets, which are more active towards the CO oxidation than {111} and {110} facets. Interestingly, the NTL/SiO2 also displayed higher catalytic activity when compared to that of the NCL/SiO2, which presents similar amount of Pt surface atoms. This result indicates that the preferential exposure of {100} facets can be more effective with respect to the number of active sites. In this way, in Pt-based materials, the preferential exposure of {100} facets may play a significant role in the optimization of the catalytic performance for CO oxidation.A oxidação de CO é considerada uma das reações mais estudadas na catálise heterogênea. Embora diversos estudos tenham sido desenvolvidos neste tema, permanece incerto o impacto de algumas propriedades dos catalisadores, como a mobilidade de oxigênio, o número de sítios ativos e as facetas preferencialmente expostas, no desempenho destes materiais. Para aprofundar o entendimento nesta área, no presente trabalho foram aplicadas nanoestruturas com tamanho, geometria e morfologia controlados, dispersas em óxidos a fim de investigar dois efeitos independentes na reação de oxidação de CO: (i) o efeito da natureza dos óxidos SiO2, TiO2, Al2O3 e CeO2 como suportes catalíticos para nanocascas de superfícies rugosas (NCR) de AgPt; e (ii) o efeito da morfologia de nanoestruturas de AgPt em formas de nanocascas de superfícies lisas (NCL) ou rugosas (NCR), e nanotubos de superfícies lisas (NTL) ou rugosas (NTR). Mais especificamente, investigou-se (i) como a mobilidade de oxigênio da estrutura dos óxidos afeta o desempenho catalítico; e (ii) como o número de sítios ativos de Pt e a natureza das facetas expostas influenciam a oxidação de CO sobre nanoestruturas com morfologia superficial (superfícies lisas ou rugosas), forma (esféricas ou unidimensional), tamanho e composição química controlados. No primeiro estudo, o desempenho catalítico decresceu na seguinte ordem: NCR/CeO2 > NCR/TiO2 > NCR/Al2O3 ≈ NCR/SiO2. A formação de vacâncias de oxigênio, a redutibilidade dos óxidos e a capacidade de armazenamento de oxigênio (OSC) foram investigados pelas técnicas de espectroscopia Raman, redução a temperatura programada de com H2 (RTP-H2) e OSC, respectivamente. Os desempenhos catalíticos foram relacionados com a mobilidade de oxigênio estrutural dos materiais. O resultado observado para o catalisador NCR/TiO2 foi associado à presença de espécies oxidadas, capazes de realizar o processo redox, após a deposição das NCR sobre o TiO2. Estas espécies não foram observadas nos catalisadores NCR/Al2O3 e NCR/SiO2. Neste estudo, o melhor resultado foi observado com o catalisador NCR/CeO2 e foi associado à forte interação metal-suporte entre as NCR e o CeO2, resultando na maior mobilidade do oxigênio estrutural no catalisador NCR/CeO2 em relação aos demais materiais. Estes dados comprovaram que o desempenho catalítico é fortemente dependente da mobilidade do oxigênio estrutural, promovida pelas interações metal-suporte. No segundo estudo, o desempenho catalítico decresceu na seguinte ordem: NTL/SiO2 > NTR/SiO2 ≈ NCL/SiO2 > NCR/SiO2. O melhor desempenho catalítico do catalisador NCL/SiO2 em relação ao do NCR/SiO2 foi associado ao maior número de sítios ativos de Pt (~3 vezes maior). O melhor desempenho do NTL/SiO2 em relação ao do NTR/SiO2 foi relacionado à exposição preferencial de facetas {100}, que são mais ativas para a oxidação de CO em relação às facetas {111} e {110}. É interessante observar que o NTL/SiO2 também exibe uma atividade catalítica superior à do NCL/SiO2, que apresenta uma quantidade similar de átomos superficiais de Pt. Este resultado indica que a exposição preferencial de facetas {100} pode ser mais efetiva em relação ao número de sítios ativos. Desta maneira, para materiais à base de Pt, a exposição preferencial de facetas {100} pode desempenhar um papel significativo na otimização do desempenho catalítico para a oxidação de CO.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarOxidação de COAgPtNanoestruturas controladasENGENHARIAS::ENGENHARIA QUIMICAOxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600d348d7f1-5523-40f0-9d08-b82dac73a6d8info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissAHMS.pdfDissAHMS.pdfapplication/pdf4965006https://repositorio.ufscar.br/bitstream/ufscar/7483/1/DissAHMS.pdf466abb56c6b9a442f17d5a3cf2d47f59MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7483/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissAHMS.pdf.txtDissAHMS.pdf.txtExtracted texttext/plain176911https://repositorio.ufscar.br/bitstream/ufscar/7483/3/DissAHMS.pdf.txt7d2e5267708c94e71cf34179097f8e00MD53THUMBNAILDissAHMS.pdf.jpgDissAHMS.pdf.jpgIM Thumbnailimage/jpeg6749https://repositorio.ufscar.br/bitstream/ufscar/7483/4/DissAHMS.pdf.jpg0294b6f5610fee36f82ae8045f4f7c3cMD54ufscar/74832023-09-18 18:31:15.877oai:repositorio.ufscar.br:ufscar/7483TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:15Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
title |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
spellingShingle |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos Silva, Alisson Henrique Marques da Oxidação de CO AgPt Nanoestruturas controladas ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
title_full |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
title_fullStr |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
title_full_unstemmed |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
title_sort |
Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos |
author |
Silva, Alisson Henrique Marques da |
author_facet |
Silva, Alisson Henrique Marques da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/7696132500255779 |
dc.contributor.author.fl_str_mv |
Silva, Alisson Henrique Marques da |
dc.contributor.advisor1.fl_str_mv |
Assaf, José Mansur |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9563312407691130 |
dc.contributor.advisor-co1.fl_str_mv |
Gomes, Janaina Fernandes |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6718634914051168 |
dc.contributor.authorID.fl_str_mv |
6f3da590-4a2a-4f21-ba13-77519dd4aa69 |
contributor_str_mv |
Assaf, José Mansur Gomes, Janaina Fernandes |
dc.subject.por.fl_str_mv |
Oxidação de CO AgPt Nanoestruturas controladas |
topic |
Oxidação de CO AgPt Nanoestruturas controladas ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA |
description |
The CO oxidation is considered one of the most studied reactions in heterogeneous catalysis. Although several studies have been developed in this field, the impact of some properties of catalysts, such as the oxygen mobility, the number of active sites and the preferential exposure of surface facets, on their catalytic performance remains unclear. To progress in the understanding of this area, in the present study nanostructures with controlled size, geometry and morphology dispersed in oxides were applied to investigate two independent effects on the CO oxidation: (i) the effect of the nature of oxides (SiO2, TiO2, CeO2 and Al2O3) as support for AgPt nanoshells displaying rough surfaces (NCR); and (ii) the effect of the morphology of AgPt nanoshells displaying smooth (NCL) or rough (NCR) surfaces, and nanotubes displaying smooth (NTL) or rough (NTR) surfaces. More specifically, was investigated (i) how the mobility of the structural oxygen affects the catalytic performance; and (ii) how the number of Pt active sites and the nature of exposed surface facets influence the CO oxidation on nanostructures displaying controlled surface morphology (smooth or rough surfaces), shape (spherical or one-dimensional), size, and chemical composition. In the first study, the catalytic performance decreased in the following order: NCR/CeO2 > NCR/TiO2 > NCR/Al2O3 ≈ NCR/SiO2. The formation of oxygen vacancies, the reducibility of the oxides and the oxygen storage capacity (OSC) were investigated by Raman spectroscopy, temperature-programmed reduction and OSC technique, respectively. The catalytic performances were related with the mobility of the structural oxygen. The result observed for the NCR/TiO2 catalyst was associated with the presence of oxidized species, which are capable to perform the redox process, after the deposition of NCR on the TiO2. These species were not observed for the NCR/Al2O3 and NCR/SiO2 catalysts. In this study, the best result observed for the NCR/CeO2 catalyst was associated with the strong metal-support interaction between NCR and CeO2, resulting in the most pronounced structural oxygen mobility for the NCR/CeO2 catalyst in comparison with the other materials. These results attest the strong dependence of the catalytic performance on the mobility of the structural oxygen, which is promoted by metal-support interactions. In the second study, the catalytic performance decreased in the following order: NTL/SiO2 > NTR/SiO2 ≈ NCL/SiO2 > NCR/SiO2. The better catalytic activity observed with the NCL/SiO2 relative to that of the NCR/SiO2 was associated with its higher number of Pt active sites (~ 3 times higher). The better result observed with the NTL/SiO2 relative to that of the NTR/SiO2 was related with the preferential exposure of {100} facets, which are more active towards the CO oxidation than {111} and {110} facets. Interestingly, the NTL/SiO2 also displayed higher catalytic activity when compared to that of the NCL/SiO2, which presents similar amount of Pt surface atoms. This result indicates that the preferential exposure of {100} facets can be more effective with respect to the number of active sites. In this way, in Pt-based materials, the preferential exposure of {100} facets may play a significant role in the optimization of the catalytic performance for CO oxidation. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-09-27T17:28:52Z |
dc.date.available.fl_str_mv |
2016-09-27T17:28:52Z |
dc.date.issued.fl_str_mv |
2016-03-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Alisson Henrique Marques da. Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7483. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7483 |
identifier_str_mv |
SILVA, Alisson Henrique Marques da. Oxidação de CO sobre nanoestruturas controladas e de interiores vazios de AgPt dispersas em óxidos. 2016. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7483. |
url |
https://repositorio.ufscar.br/handle/ufscar/7483 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
d348d7f1-5523-40f0-9d08-b82dac73a6d8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7483/1/DissAHMS.pdf https://repositorio.ufscar.br/bitstream/ufscar/7483/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7483/3/DissAHMS.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7483/4/DissAHMS.pdf.jpg |
bitstream.checksum.fl_str_mv |
466abb56c6b9a442f17d5a3cf2d47f59 ae0398b6f8b235e40ad82cba6c50031d 7d2e5267708c94e71cf34179097f8e00 0294b6f5610fee36f82ae8045f4f7c3c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715562262429696 |