GARMA models, a new perspective using Bayesian methods and transformations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/8949 |
Resumo: | Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average). |
id |
SCAR_05e4818e07e7677c704c9a60f8c2f958 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/8949 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Andrade, Breno Silveira deAndrade Filho, Marinho Gomes dehttp://lattes.cnpq.br/4126245980112687http://lattes.cnpq.br/2060946751027537c2a7cd39-2032-4bab-b2d6-3c057eb8b03e2017-08-08T19:15:39Z2017-08-08T19:15:39Z2016-12-16ANDRADE, Breno Silveira de. GARMA models, a new perspective using Bayesian methods and transformations. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8949.https://repositorio.ufscar.br/handle/ufscar/8949Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average).Modelos Autoregressivos e de médias móveis generalizados (GARMA) são uma classe de modelos que foi desenvolvida para extender os conhecidos modelos ARMA com distribuição Gaussiana para um cenário de series temporais não Gaussianas. Este trabalho apresenta os modelos GARMA aplicados a distribuições discretas, e alguns métodos de reamostragem aplicados neste contexto. É proposto neste trabalho uma abordagem Bayesiana para os modelos GARMA. O trabalho da continuidade apresentando os modelos GARMA transformados, utilizando a transformação de Box-Cox. E por último porém não menos importante uma abordagem Bayesiana para os modelos GARMA transformados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarARMA transformado generalizadoARMA generalizadoAbordagem BayesianaDistribuições discretasDistribuições contínuasTransformed generalized ARMA modelBayesian approachDiscrete distributionsContinuous distributionsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAGARMA models, a new perspective using Bayesian methods and transformationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006006105a248-1b18-49f6-bbf3-c4006673f34ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseBSA.pdfTeseBSA.pdfapplication/pdf10322083https://repositorio.ufscar.br/bitstream/ufscar/8949/1/TeseBSA.pdf4c30c490934f23dbad9d5a1f087ef182MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/8949/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseBSA.pdf.txtTeseBSA.pdf.txtExtracted texttext/plain141510https://repositorio.ufscar.br/bitstream/ufscar/8949/3/TeseBSA.pdf.txt6595830b23fa01fc404d240b499f711dMD53THUMBNAILTeseBSA.pdf.jpgTeseBSA.pdf.jpgIM Thumbnailimage/jpeg4825https://repositorio.ufscar.br/bitstream/ufscar/8949/4/TeseBSA.pdf.jpgf535b6504cd3a2dfeeb059efc484b973MD54ufscar/89492023-09-18 18:31:25.645oai:repositorio.ufscar.br:ufscar/8949TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:25Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
GARMA models, a new perspective using Bayesian methods and transformations |
title |
GARMA models, a new perspective using Bayesian methods and transformations |
spellingShingle |
GARMA models, a new perspective using Bayesian methods and transformations Andrade, Breno Silveira de ARMA transformado generalizado ARMA generalizado Abordagem Bayesiana Distribuições discretas Distribuições contínuas Transformed generalized ARMA model Bayesian approach Discrete distributions Continuous distributions CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
GARMA models, a new perspective using Bayesian methods and transformations |
title_full |
GARMA models, a new perspective using Bayesian methods and transformations |
title_fullStr |
GARMA models, a new perspective using Bayesian methods and transformations |
title_full_unstemmed |
GARMA models, a new perspective using Bayesian methods and transformations |
title_sort |
GARMA models, a new perspective using Bayesian methods and transformations |
author |
Andrade, Breno Silveira de |
author_facet |
Andrade, Breno Silveira de |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2060946751027537 |
dc.contributor.author.fl_str_mv |
Andrade, Breno Silveira de |
dc.contributor.advisor1.fl_str_mv |
Andrade Filho, Marinho Gomes de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4126245980112687 |
dc.contributor.authorID.fl_str_mv |
c2a7cd39-2032-4bab-b2d6-3c057eb8b03e |
contributor_str_mv |
Andrade Filho, Marinho Gomes de |
dc.subject.por.fl_str_mv |
ARMA transformado generalizado ARMA generalizado Abordagem Bayesiana Distribuições discretas Distribuições contínuas |
topic |
ARMA transformado generalizado ARMA generalizado Abordagem Bayesiana Distribuições discretas Distribuições contínuas Transformed generalized ARMA model Bayesian approach Discrete distributions Continuous distributions CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Transformed generalized ARMA model Bayesian approach Discrete distributions Continuous distributions |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average). |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-12-16 |
dc.date.accessioned.fl_str_mv |
2017-08-08T19:15:39Z |
dc.date.available.fl_str_mv |
2017-08-08T19:15:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ANDRADE, Breno Silveira de. GARMA models, a new perspective using Bayesian methods and transformations. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8949. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/8949 |
identifier_str_mv |
ANDRADE, Breno Silveira de. GARMA models, a new perspective using Bayesian methods and transformations. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8949. |
url |
https://repositorio.ufscar.br/handle/ufscar/8949 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
6105a248-1b18-49f6-bbf3-c4006673f34a |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/8949/1/TeseBSA.pdf https://repositorio.ufscar.br/bitstream/ufscar/8949/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/8949/3/TeseBSA.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/8949/4/TeseBSA.pdf.jpg |
bitstream.checksum.fl_str_mv |
4c30c490934f23dbad9d5a1f087ef182 ae0398b6f8b235e40ad82cba6c50031d 6595830b23fa01fc404d240b499f711d f535b6504cd3a2dfeeb059efc484b973 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715577388138496 |