Detecção de invasões biológicas no cerrado utilizando deep learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/12178 |
Resumo: | The Cerrado represents an important reserve of natural resources, with biodiversity representativity worldwide. On the other hand, biological invasions can threaten the balance and put in risk local species, in this way making it urgent to elaborate technological resources that may cooperate in the natural preservation and conservation process. The present study intends to use images from visual spectrum areas (RGB) collected by an UAV for autonomous detection of biological invasions in Cerrado, adopting techniques from Deep Learning. For getting the images, the UAV (Quadcopter) and the attached RGB sensor were chosen from their greatest accessibility and resulting reproducibility. The Convolutional AutoEncoder (CAE) and U-Net networks were adopted for being widely used in Dataset with a few samples, because of its capacity of generalizing, despite having few examples for the training. Therefore, an original Dataset was created from the study area using manual delineation and later the same basis was broadened with Data Augmentation technique. For analyzing the unchanged database, the Convolutional AutoEncoder network overcome the U-net one with an 88% F-score against 84%. With the second DataSet with Data Augmentation, the results were even better, with an 93% CAE F-score, compared with 84% from U-net and superior Precision on both scenarios (85.4% CAE and 82% U-net for original DataSet and 93% CAE and 84% with Data Augmentation). Those differences are relevant because of the necessity of precision in the results to correctly direct teams on their search tasks for biological invasions through the wide Cerrado territory. It also emphasizes CAE characteristics considering its smallest size, with a small number of layers and neurons, and with higher metrics for this application. Thus, it was possible to note that the predictive model generated by AutoEncoder Network can be used efficiently, with great potential for other databases. Finally, it is concluded that this paper represents the Machine Learning progress and its capacity of assisting daily life, expanding the possibilities of future works. |
id |
SCAR_08893f73d877b11afb96d16c331b48ae |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/12178 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Santos, Igor Araujo DiasVivaldini, Kelen Cristiane Teixeirahttp://lattes.cnpq.br/5245409138233148http://lattes.cnpq.br/520260935610313026fdc0b7-6939-4a53-8ecd-99de1bc0693f2020-01-28T17:46:47Z2020-01-28T17:46:47Z2019-07-18SANTOS, Igor Araujo Dias. Detecção de invasões biológicas no cerrado utilizando deep learning. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12178.https://repositorio.ufscar.br/handle/ufscar/12178The Cerrado represents an important reserve of natural resources, with biodiversity representativity worldwide. On the other hand, biological invasions can threaten the balance and put in risk local species, in this way making it urgent to elaborate technological resources that may cooperate in the natural preservation and conservation process. The present study intends to use images from visual spectrum areas (RGB) collected by an UAV for autonomous detection of biological invasions in Cerrado, adopting techniques from Deep Learning. For getting the images, the UAV (Quadcopter) and the attached RGB sensor were chosen from their greatest accessibility and resulting reproducibility. The Convolutional AutoEncoder (CAE) and U-Net networks were adopted for being widely used in Dataset with a few samples, because of its capacity of generalizing, despite having few examples for the training. Therefore, an original Dataset was created from the study area using manual delineation and later the same basis was broadened with Data Augmentation technique. For analyzing the unchanged database, the Convolutional AutoEncoder network overcome the U-net one with an 88% F-score against 84%. With the second DataSet with Data Augmentation, the results were even better, with an 93% CAE F-score, compared with 84% from U-net and superior Precision on both scenarios (85.4% CAE and 82% U-net for original DataSet and 93% CAE and 84% with Data Augmentation). Those differences are relevant because of the necessity of precision in the results to correctly direct teams on their search tasks for biological invasions through the wide Cerrado territory. It also emphasizes CAE characteristics considering its smallest size, with a small number of layers and neurons, and with higher metrics for this application. Thus, it was possible to note that the predictive model generated by AutoEncoder Network can be used efficiently, with great potential for other databases. Finally, it is concluded that this paper represents the Machine Learning progress and its capacity of assisting daily life, expanding the possibilities of future works.O Cerrado representa uma importante reserva de riquezas naturais, com biodiversidade representativa a nível mundial. Por outro lado, invasões biológicas podem ameaçar o equilíbrio e por em risco espécies locais, dessa forma faz com que seja urgente elaborar recursos tecnológicos que possam colaborar no processo de preservação e conservação natural. O presente trabalho pretende utilizar imagens áreas de espectro visível (RGB) coletadas por um UAV para detecção autônoma de invasões biológicas no Cerrado adotando técnicas de Deep Learning. Para a aquisição de imagens, o UAV (Quadricóptero) e o sensor RGB acoplado, foram escolhidos pela sua maior acessibilidade e consequente reprodutibilidade. As redes Convolutional AutoEncoder (CAE) e U-Net} foram adotadas por serem muito utilizadas em DataSet com pequeno número de amostras, visto sua capacidade de generalização apesar de poucos exemplos para o treinamento. Desta forma foi criado um DataSet original da área de estudo utilizando delineamento manual e depois esta mesma base foi ampliada utilizando técnica de Data Augmentation. Para a análise do banco de dados inalterado, a rede Convolutional AutoEncoder superou a U-net com F-score de 88% contra 84%. Já com o segundo DataSet com Data Augmentation, os resultados foram melhores, com F-score de 93% do CAE, comparado com 84% da U-net e Precision superior em ambos os cenários (85,4% CAE e 82% U-net para o DataSet original e 93% CAE e 84% com Data Augmentation). Essas diferenças são relevantes visto a necessidade de precisão dos resultados para direcionar corretamente equipes em suas tarefas de busca por invasões biológicas pelo território extenso do Cerrado. Também se destacam as características do CAE levando em consideração seu menor tamanho, com menor número de camadas e neurônios, e com métricas superiores para essa aplicação. Dessa forma, foi possível observar que o modelo preditivo gerado pela Rede AutoEncoder pode ser utilizado de forma eficiente, com grande potencial para outros bancos de dados. Por fim conclui-se que o trabalho representa os avanços de Aprendizagem de Máquina e sua capacidade de auxiliar no cotidiano, ampliando as possibilidades de trabalhos futuros.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq 133483/2018-5.porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAprendizagem de máquinaCerradoUAVSegmentação semânticaVegetaçãoU-NetDeep learningDroneFully convolutional networksAutoencodersSemantic segmentationData augmentationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAODetecção de invasões biológicas no cerrado utilizando deep learningDetection of biological invasion on cerrado using deep learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6006000fa4df64-b859-4a9f-8bce-831f79781811reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDetecção de Invasões no Cerrado utilizando Deep Learning.pdfDetecção de Invasões no Cerrado utilizando Deep Learning.pdfDissertação Final Revisadaapplication/pdf18898375https://repositorio.ufscar.br/bitstream/ufscar/12178/1/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdff61e842c4fcba2100fabfad82edd470dMD51Carta Comprovante.jpgCarta Comprovante.jpgCarta Comprovanteimage/jpeg1084159https://repositorio.ufscar.br/bitstream/ufscar/12178/3/Carta%20Comprovante.jpg4facf93c41ed753cc1aec7ec9ffecdadMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12178/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.txtDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.txtExtracted texttext/plain156529https://repositorio.ufscar.br/bitstream/ufscar/12178/5/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.txt0b461593cb5f528f8d3ed01d975733a1MD55THUMBNAILDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.jpgDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.jpgIM Thumbnailimage/jpeg8796https://repositorio.ufscar.br/bitstream/ufscar/12178/6/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.jpgc57e6bcc24e115e13fdc612aab82af8dMD56Carta Comprovante.jpg.jpgCarta Comprovante.jpg.jpgGenerated Thumbnailimage/jpeg6468https://repositorio.ufscar.br/bitstream/ufscar/12178/7/Carta%20Comprovante.jpg.jpgaeefa1665539b271b90a351f6075aaf0MD57ufscar/121782023-09-18 18:32:04.133oai:repositorio.ufscar.br:ufscar/12178Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:04Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Detecção de invasões biológicas no cerrado utilizando deep learning |
dc.title.alternative.eng.fl_str_mv |
Detection of biological invasion on cerrado using deep learning |
title |
Detecção de invasões biológicas no cerrado utilizando deep learning |
spellingShingle |
Detecção de invasões biológicas no cerrado utilizando deep learning Santos, Igor Araujo Dias Aprendizagem de máquina Cerrado UAV Segmentação semântica Vegetação U-Net Deep learning Drone Fully convolutional networks Autoencoders Semantic segmentation Data augmentation CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
title_short |
Detecção de invasões biológicas no cerrado utilizando deep learning |
title_full |
Detecção de invasões biológicas no cerrado utilizando deep learning |
title_fullStr |
Detecção de invasões biológicas no cerrado utilizando deep learning |
title_full_unstemmed |
Detecção de invasões biológicas no cerrado utilizando deep learning |
title_sort |
Detecção de invasões biológicas no cerrado utilizando deep learning |
author |
Santos, Igor Araujo Dias |
author_facet |
Santos, Igor Araujo Dias |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/5202609356103130 |
dc.contributor.author.fl_str_mv |
Santos, Igor Araujo Dias |
dc.contributor.advisor1.fl_str_mv |
Vivaldini, Kelen Cristiane Teixeira |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5245409138233148 |
dc.contributor.authorID.fl_str_mv |
26fdc0b7-6939-4a53-8ecd-99de1bc0693f |
contributor_str_mv |
Vivaldini, Kelen Cristiane Teixeira |
dc.subject.por.fl_str_mv |
Aprendizagem de máquina Cerrado UAV Segmentação semântica Vegetação U-Net |
topic |
Aprendizagem de máquina Cerrado UAV Segmentação semântica Vegetação U-Net Deep learning Drone Fully convolutional networks Autoencoders Semantic segmentation Data augmentation CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Deep learning Drone Fully convolutional networks Autoencoders Semantic segmentation Data augmentation |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
description |
The Cerrado represents an important reserve of natural resources, with biodiversity representativity worldwide. On the other hand, biological invasions can threaten the balance and put in risk local species, in this way making it urgent to elaborate technological resources that may cooperate in the natural preservation and conservation process. The present study intends to use images from visual spectrum areas (RGB) collected by an UAV for autonomous detection of biological invasions in Cerrado, adopting techniques from Deep Learning. For getting the images, the UAV (Quadcopter) and the attached RGB sensor were chosen from their greatest accessibility and resulting reproducibility. The Convolutional AutoEncoder (CAE) and U-Net networks were adopted for being widely used in Dataset with a few samples, because of its capacity of generalizing, despite having few examples for the training. Therefore, an original Dataset was created from the study area using manual delineation and later the same basis was broadened with Data Augmentation technique. For analyzing the unchanged database, the Convolutional AutoEncoder network overcome the U-net one with an 88% F-score against 84%. With the second DataSet with Data Augmentation, the results were even better, with an 93% CAE F-score, compared with 84% from U-net and superior Precision on both scenarios (85.4% CAE and 82% U-net for original DataSet and 93% CAE and 84% with Data Augmentation). Those differences are relevant because of the necessity of precision in the results to correctly direct teams on their search tasks for biological invasions through the wide Cerrado territory. It also emphasizes CAE characteristics considering its smallest size, with a small number of layers and neurons, and with higher metrics for this application. Thus, it was possible to note that the predictive model generated by AutoEncoder Network can be used efficiently, with great potential for other databases. Finally, it is concluded that this paper represents the Machine Learning progress and its capacity of assisting daily life, expanding the possibilities of future works. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-07-18 |
dc.date.accessioned.fl_str_mv |
2020-01-28T17:46:47Z |
dc.date.available.fl_str_mv |
2020-01-28T17:46:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Igor Araujo Dias. Detecção de invasões biológicas no cerrado utilizando deep learning. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12178. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/12178 |
identifier_str_mv |
SANTOS, Igor Araujo Dias. Detecção de invasões biológicas no cerrado utilizando deep learning. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12178. |
url |
https://repositorio.ufscar.br/handle/ufscar/12178 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
0fa4df64-b859-4a9f-8bce-831f79781811 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/12178/1/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf https://repositorio.ufscar.br/bitstream/ufscar/12178/3/Carta%20Comprovante.jpg https://repositorio.ufscar.br/bitstream/ufscar/12178/4/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/12178/5/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12178/6/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/12178/7/Carta%20Comprovante.jpg.jpg |
bitstream.checksum.fl_str_mv |
f61e842c4fcba2100fabfad82edd470d 4facf93c41ed753cc1aec7ec9ffecdad e39d27027a6cc9cb039ad269a5db8e34 0b461593cb5f528f8d3ed01d975733a1 c57e6bcc24e115e13fdc612aab82af8d aeefa1665539b271b90a351f6075aaf0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715612274262016 |