Detecção de invasões biológicas no cerrado utilizando deep learning

Detalhes bibliográficos
Autor(a) principal: Santos, Igor Araujo Dias
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/12178
Resumo: The Cerrado represents an important reserve of natural resources, with biodiversity representativity worldwide. On the other hand, biological invasions can threaten the balance and put in risk local species, in this way making it urgent to elaborate technological resources that may cooperate in the natural preservation and conservation process. The present study intends to use images from visual spectrum areas (RGB) collected by an UAV for autonomous detection of biological invasions in Cerrado, adopting techniques from Deep Learning. For getting the images, the UAV (Quadcopter) and the attached RGB sensor were chosen from their greatest accessibility and resulting reproducibility. The Convolutional AutoEncoder (CAE) and U-Net networks were adopted for being widely used in Dataset with a few samples, because of its capacity of generalizing, despite having few examples for the training. Therefore, an original Dataset was created from the study area using manual delineation and later the same basis was broadened with Data Augmentation technique. For analyzing the unchanged database, the Convolutional AutoEncoder network overcome the U-net one with an 88% F-score against 84%. With the second DataSet with Data Augmentation, the results were even better, with an 93% CAE F-score, compared with 84% from U-net and superior Precision on both scenarios (85.4% CAE and 82% U-net for original DataSet and 93% CAE and 84% with Data Augmentation). Those differences are relevant because of the necessity of precision in the results to correctly direct teams on their search tasks for biological invasions through the wide Cerrado territory. It also emphasizes CAE characteristics considering its smallest size, with a small number of layers and neurons, and with higher metrics for this application. Thus, it was possible to note that the predictive model generated by AutoEncoder Network can be used efficiently, with great potential for other databases. Finally, it is concluded that this paper represents the Machine Learning progress and its capacity of assisting daily life, expanding the possibilities of future works.
id SCAR_08893f73d877b11afb96d16c331b48ae
oai_identifier_str oai:repositorio.ufscar.br:ufscar/12178
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Santos, Igor Araujo DiasVivaldini, Kelen Cristiane Teixeirahttp://lattes.cnpq.br/5245409138233148http://lattes.cnpq.br/520260935610313026fdc0b7-6939-4a53-8ecd-99de1bc0693f2020-01-28T17:46:47Z2020-01-28T17:46:47Z2019-07-18SANTOS, Igor Araujo Dias. Detecção de invasões biológicas no cerrado utilizando deep learning. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12178.https://repositorio.ufscar.br/handle/ufscar/12178The Cerrado represents an important reserve of natural resources, with biodiversity representativity worldwide. On the other hand, biological invasions can threaten the balance and put in risk local species, in this way making it urgent to elaborate technological resources that may cooperate in the natural preservation and conservation process. The present study intends to use images from visual spectrum areas (RGB) collected by an UAV for autonomous detection of biological invasions in Cerrado, adopting techniques from Deep Learning. For getting the images, the UAV (Quadcopter) and the attached RGB sensor were chosen from their greatest accessibility and resulting reproducibility. The Convolutional AutoEncoder (CAE) and U-Net networks were adopted for being widely used in Dataset with a few samples, because of its capacity of generalizing, despite having few examples for the training. Therefore, an original Dataset was created from the study area using manual delineation and later the same basis was broadened with Data Augmentation technique. For analyzing the unchanged database, the Convolutional AutoEncoder network overcome the U-net one with an 88% F-score against 84%. With the second DataSet with Data Augmentation, the results were even better, with an 93% CAE F-score, compared with 84% from U-net and superior Precision on both scenarios (85.4% CAE and 82% U-net for original DataSet and 93% CAE and 84% with Data Augmentation). Those differences are relevant because of the necessity of precision in the results to correctly direct teams on their search tasks for biological invasions through the wide Cerrado territory. It also emphasizes CAE characteristics considering its smallest size, with a small number of layers and neurons, and with higher metrics for this application. Thus, it was possible to note that the predictive model generated by AutoEncoder Network can be used efficiently, with great potential for other databases. Finally, it is concluded that this paper represents the Machine Learning progress and its capacity of assisting daily life, expanding the possibilities of future works.O Cerrado representa uma importante reserva de riquezas naturais, com biodiversidade representativa a nível mundial. Por outro lado, invasões biológicas podem ameaçar o equilíbrio e por em risco espécies locais, dessa forma faz com que seja urgente elaborar recursos tecnológicos que possam colaborar no processo de preservação e conservação natural. O presente trabalho pretende utilizar imagens áreas de espectro visível (RGB) coletadas por um UAV para detecção autônoma de invasões biológicas no Cerrado adotando técnicas de Deep Learning. Para a aquisição de imagens, o UAV (Quadricóptero) e o sensor RGB acoplado, foram escolhidos pela sua maior acessibilidade e consequente reprodutibilidade. As redes Convolutional AutoEncoder (CAE) e U-Net} foram adotadas por serem muito utilizadas em DataSet com pequeno número de amostras, visto sua capacidade de generalização apesar de poucos exemplos para o treinamento. Desta forma foi criado um DataSet original da área de estudo utilizando delineamento manual e depois esta mesma base foi ampliada utilizando técnica de Data Augmentation. Para a análise do banco de dados inalterado, a rede Convolutional AutoEncoder superou a U-net com F-score de 88% contra 84%. Já com o segundo DataSet com Data Augmentation, os resultados foram melhores, com F-score de 93% do CAE, comparado com 84% da U-net e Precision superior em ambos os cenários (85,4% CAE e 82% U-net para o DataSet original e 93% CAE e 84% com Data Augmentation). Essas diferenças são relevantes visto a necessidade de precisão dos resultados para direcionar corretamente equipes em suas tarefas de busca por invasões biológicas pelo território extenso do Cerrado. Também se destacam as características do CAE levando em consideração seu menor tamanho, com menor número de camadas e neurônios, e com métricas superiores para essa aplicação. Dessa forma, foi possível observar que o modelo preditivo gerado pela Rede AutoEncoder pode ser utilizado de forma eficiente, com grande potencial para outros bancos de dados. Por fim conclui-se que o trabalho representa os avanços de Aprendizagem de Máquina e sua capacidade de auxiliar no cotidiano, ampliando as possibilidades de trabalhos futuros.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq 133483/2018-5.porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAprendizagem de máquinaCerradoUAVSegmentação semânticaVegetaçãoU-NetDeep learningDroneFully convolutional networksAutoencodersSemantic segmentationData augmentationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAODetecção de invasões biológicas no cerrado utilizando deep learningDetection of biological invasion on cerrado using deep learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6006000fa4df64-b859-4a9f-8bce-831f79781811reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDetecção de Invasões no Cerrado utilizando Deep Learning.pdfDetecção de Invasões no Cerrado utilizando Deep Learning.pdfDissertação Final Revisadaapplication/pdf18898375https://repositorio.ufscar.br/bitstream/ufscar/12178/1/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdff61e842c4fcba2100fabfad82edd470dMD51Carta Comprovante.jpgCarta Comprovante.jpgCarta Comprovanteimage/jpeg1084159https://repositorio.ufscar.br/bitstream/ufscar/12178/3/Carta%20Comprovante.jpg4facf93c41ed753cc1aec7ec9ffecdadMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12178/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.txtDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.txtExtracted texttext/plain156529https://repositorio.ufscar.br/bitstream/ufscar/12178/5/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.txt0b461593cb5f528f8d3ed01d975733a1MD55THUMBNAILDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.jpgDetecção de Invasões no Cerrado utilizando Deep Learning.pdf.jpgIM Thumbnailimage/jpeg8796https://repositorio.ufscar.br/bitstream/ufscar/12178/6/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.jpgc57e6bcc24e115e13fdc612aab82af8dMD56Carta Comprovante.jpg.jpgCarta Comprovante.jpg.jpgGenerated Thumbnailimage/jpeg6468https://repositorio.ufscar.br/bitstream/ufscar/12178/7/Carta%20Comprovante.jpg.jpgaeefa1665539b271b90a351f6075aaf0MD57ufscar/121782023-09-18 18:32:04.133oai:repositorio.ufscar.br:ufscar/12178Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:04Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Detecção de invasões biológicas no cerrado utilizando deep learning
dc.title.alternative.eng.fl_str_mv Detection of biological invasion on cerrado using deep learning
title Detecção de invasões biológicas no cerrado utilizando deep learning
spellingShingle Detecção de invasões biológicas no cerrado utilizando deep learning
Santos, Igor Araujo Dias
Aprendizagem de máquina
Cerrado
UAV
Segmentação semântica
Vegetação
U-Net
Deep learning
Drone
Fully convolutional networks
Autoencoders
Semantic segmentation
Data augmentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Detecção de invasões biológicas no cerrado utilizando deep learning
title_full Detecção de invasões biológicas no cerrado utilizando deep learning
title_fullStr Detecção de invasões biológicas no cerrado utilizando deep learning
title_full_unstemmed Detecção de invasões biológicas no cerrado utilizando deep learning
title_sort Detecção de invasões biológicas no cerrado utilizando deep learning
author Santos, Igor Araujo Dias
author_facet Santos, Igor Araujo Dias
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5202609356103130
dc.contributor.author.fl_str_mv Santos, Igor Araujo Dias
dc.contributor.advisor1.fl_str_mv Vivaldini, Kelen Cristiane Teixeira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5245409138233148
dc.contributor.authorID.fl_str_mv 26fdc0b7-6939-4a53-8ecd-99de1bc0693f
contributor_str_mv Vivaldini, Kelen Cristiane Teixeira
dc.subject.por.fl_str_mv Aprendizagem de máquina
Cerrado
UAV
Segmentação semântica
Vegetação
U-Net
topic Aprendizagem de máquina
Cerrado
UAV
Segmentação semântica
Vegetação
U-Net
Deep learning
Drone
Fully convolutional networks
Autoencoders
Semantic segmentation
Data augmentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.eng.fl_str_mv Deep learning
Drone
Fully convolutional networks
Autoencoders
Semantic segmentation
Data augmentation
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description The Cerrado represents an important reserve of natural resources, with biodiversity representativity worldwide. On the other hand, biological invasions can threaten the balance and put in risk local species, in this way making it urgent to elaborate technological resources that may cooperate in the natural preservation and conservation process. The present study intends to use images from visual spectrum areas (RGB) collected by an UAV for autonomous detection of biological invasions in Cerrado, adopting techniques from Deep Learning. For getting the images, the UAV (Quadcopter) and the attached RGB sensor were chosen from their greatest accessibility and resulting reproducibility. The Convolutional AutoEncoder (CAE) and U-Net networks were adopted for being widely used in Dataset with a few samples, because of its capacity of generalizing, despite having few examples for the training. Therefore, an original Dataset was created from the study area using manual delineation and later the same basis was broadened with Data Augmentation technique. For analyzing the unchanged database, the Convolutional AutoEncoder network overcome the U-net one with an 88% F-score against 84%. With the second DataSet with Data Augmentation, the results were even better, with an 93% CAE F-score, compared with 84% from U-net and superior Precision on both scenarios (85.4% CAE and 82% U-net for original DataSet and 93% CAE and 84% with Data Augmentation). Those differences are relevant because of the necessity of precision in the results to correctly direct teams on their search tasks for biological invasions through the wide Cerrado territory. It also emphasizes CAE characteristics considering its smallest size, with a small number of layers and neurons, and with higher metrics for this application. Thus, it was possible to note that the predictive model generated by AutoEncoder Network can be used efficiently, with great potential for other databases. Finally, it is concluded that this paper represents the Machine Learning progress and its capacity of assisting daily life, expanding the possibilities of future works.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-18
dc.date.accessioned.fl_str_mv 2020-01-28T17:46:47Z
dc.date.available.fl_str_mv 2020-01-28T17:46:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Igor Araujo Dias. Detecção de invasões biológicas no cerrado utilizando deep learning. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12178.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/12178
identifier_str_mv SANTOS, Igor Araujo Dias. Detecção de invasões biológicas no cerrado utilizando deep learning. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12178.
url https://repositorio.ufscar.br/handle/ufscar/12178
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 0fa4df64-b859-4a9f-8bce-831f79781811
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/12178/1/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12178/3/Carta%20Comprovante.jpg
https://repositorio.ufscar.br/bitstream/ufscar/12178/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/12178/5/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12178/6/Detecc%cc%a7a%cc%83o%20de%20Invaso%cc%83es%20no%20Cerrado%20utilizando%20Deep%20Learning.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/12178/7/Carta%20Comprovante.jpg.jpg
bitstream.checksum.fl_str_mv f61e842c4fcba2100fabfad82edd470d
4facf93c41ed753cc1aec7ec9ffecdad
e39d27027a6cc9cb039ad269a5db8e34
0b461593cb5f528f8d3ed01d975733a1
c57e6bcc24e115e13fdc612aab82af8d
aeefa1665539b271b90a351f6075aaf0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715612274262016