Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/11716 |
Resumo: | Interest in the use of mesenchymal stromal cells (MSCs) has increased in the last 10 years because of the increasing discovery of its special characteristics for the treatment of diseases through cell therapy or tissue engineering. Despite being in the majority of postnatal organs and tissues, the amount of MSCs required to initiate any clinical treatment is insufficient and therefore the necessity of its in vitro expansion. Cultivation systems with the use of microcarriers and bioreactors, such as the stirred tank, are presented as the immediate proposal, allowing to obtain high cellular densities in a 3D environment. However, the stirred tank presents some limitations related to the distribution of hydrodynamic forces within the bioreactor and the difficulty in controlling the size of aggregates formed during cultivation, ultimately affecting the process yield of obtaining viable cells. A highly promising bioreactor proposal for presenting low and more homogeneous shear stresses, satisfactory mass transfer and ease of scaling is the Taylor Vortex Flow Bioreactor (TVFB). In a preliminary study, the BEVT, with a work volume of 60 mL, was promising in the cultivation of a line of immortalized CEMs attached to microcarriers, presenting controlled sizes of cellular aggregates (<400 μm) under conditions of low shear stresses and with sufficient oxygen transfer. In this sense, the present work involved the construction and the study of a BEVT with a work volume of 100 mL, for the cultivation of primary CEMs currently used in clinical treatments. Thus, the additional evaluation of important hydrodynamic parameters, such as the minimum velocity of suspension of particles (Ns1) and time of mixing (θm) in different conditions of rotation, were approached for two internal cylinder configurations, named in this study as round and deformed. In this evaluation the BEVT with the deformed inner cylinder presented better performance and was chosen in the culture studies. For this configuration Ns1 values between 70 and 90 rpm were obtained using a concentration of 1 to 3 g of microcarregages/mL and a maximum θm of 21±2,2 seconds for a rotation speed of 50 rpm. Cultivation of umbilical cord derived CEMs cultures and Cultispher®S 1 and 3 g / L adipose tissue using the 10% SFB alpha MEM culture medium confirmed the best modulation of the aggregation presented in the BEVT, compared to the Spinner flask, under low shear conditions, confirmed by the LDH enzyme activity, and with adequate oxygen transfer, obtaining factors of expansion of up to 17 times of viable and functional CEMs. Thus, these results present the BEVT as a very promising alternative for the cultivation of large-scale CEMs for cell therapy. |
id |
SCAR_0d092476c2d353b2821567dc2889a343 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/11716 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Gil, Liseth Viviana GonzálezSuazo, Cláudio Alberto Torreshttp://lattes.cnpq.br/9591447226240450http://lattes.cnpq.br/0402210458004107f4640cef-0056-4985-9bae-9be9f05140002019-08-12T20:12:50Z2019-08-12T20:12:50Z2019-04-29GIL, Liseth Viviana González. Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais. 2019. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11716.https://repositorio.ufscar.br/handle/ufscar/11716Interest in the use of mesenchymal stromal cells (MSCs) has increased in the last 10 years because of the increasing discovery of its special characteristics for the treatment of diseases through cell therapy or tissue engineering. Despite being in the majority of postnatal organs and tissues, the amount of MSCs required to initiate any clinical treatment is insufficient and therefore the necessity of its in vitro expansion. Cultivation systems with the use of microcarriers and bioreactors, such as the stirred tank, are presented as the immediate proposal, allowing to obtain high cellular densities in a 3D environment. However, the stirred tank presents some limitations related to the distribution of hydrodynamic forces within the bioreactor and the difficulty in controlling the size of aggregates formed during cultivation, ultimately affecting the process yield of obtaining viable cells. A highly promising bioreactor proposal for presenting low and more homogeneous shear stresses, satisfactory mass transfer and ease of scaling is the Taylor Vortex Flow Bioreactor (TVFB). In a preliminary study, the BEVT, with a work volume of 60 mL, was promising in the cultivation of a line of immortalized CEMs attached to microcarriers, presenting controlled sizes of cellular aggregates (<400 μm) under conditions of low shear stresses and with sufficient oxygen transfer. In this sense, the present work involved the construction and the study of a BEVT with a work volume of 100 mL, for the cultivation of primary CEMs currently used in clinical treatments. Thus, the additional evaluation of important hydrodynamic parameters, such as the minimum velocity of suspension of particles (Ns1) and time of mixing (θm) in different conditions of rotation, were approached for two internal cylinder configurations, named in this study as round and deformed. In this evaluation the BEVT with the deformed inner cylinder presented better performance and was chosen in the culture studies. For this configuration Ns1 values between 70 and 90 rpm were obtained using a concentration of 1 to 3 g of microcarregages/mL and a maximum θm of 21±2,2 seconds for a rotation speed of 50 rpm. Cultivation of umbilical cord derived CEMs cultures and Cultispher®S 1 and 3 g / L adipose tissue using the 10% SFB alpha MEM culture medium confirmed the best modulation of the aggregation presented in the BEVT, compared to the Spinner flask, under low shear conditions, confirmed by the LDH enzyme activity, and with adequate oxygen transfer, obtaining factors of expansion of up to 17 times of viable and functional CEMs. Thus, these results present the BEVT as a very promising alternative for the cultivation of large-scale CEMs for cell therapy.O interesse no uso das células estromais mesenquimais (CEMs) tem aumentado nos últimos 10 anos como consequência do crescente descobrimento de suas características atraentes na regeneração de órgão e tecido, no campo da terapia celular e engenharia de tecidos. Apesar de estar presente na maioria dos órgãos e tecidos pós-natais, a quantidade de CEMs requeridas para iniciar qualquer tratamento clínico é insuficiente e por isso há necessidade de sua expansão in vitro. Sistemas de cultivo com o uso de microcarregadores e biorreatores, como o tradicional tanque agitado, são apresentados como a proposta mais imediata, permitindo obter altas densidades celulares em um ambiente 3D mais parecido com o in vivo. Apesar do tanque agitado ser o mais utilizado em vários bioprocessos, em cultivo de células aderentes tem apresentado algumas limitações relacionadas com a distribuição heterogênea de forças hidrodinâmicas dentro do biorreator e a dificuldade para controlar o tamanho de agregados formados durante o cultivo, afetando finalmente o rendimento do processo de obtenção de células viáveis e funcionais necessárias nos tratamentos clínicos. Uma proposta bastante promissora de biorreator por apresentar baixas e mais homogêneas tensões de cisalhamento, transferência de oxigênio satisfatória e facilidade no escalonamento é o Biorreator de Escoamento em Vórtices de Taylor (BEVT). Em um estudo preliminar, o BEVT, com um volume de trabalho de 60 mL, se mostrou promissório no cultivo de uma linhagem de CEMs imortalizadas aderidas a microcarregadores, apresentando tamanhos controlados de agregados celulares (<400 µm) em condições de baixas tensões de cisalhamento e com suficiente transferência de oxigênio. Nesse sentido, o presente trabalho envolveu a construção e o estudo de um BEVT com um volume de trabalho de 100 mL, para o cultivo de CEMs primarias usadas atualmente nos tratamentos clínicos. Desse modo, a avaliação adicional de parâmetros hidrodinâmicos importantes como a velocidade mínima de suspensão de partículas (Ns1) e tempo de mistura (θm) em diferentes condições de rotação, foram abordados para duas configurações de cilindro interno, nomeados neste estudo como redondo e deformado. Nesta avaliação o BEVT com o cilindro interno deformado apresentou melhor performance e foi o escolhido nos estudos de cultivo. Para esta configuração foram obtidos valores de Ns1 entre 70 e 90 rpm, usando uma concentração de 1 a 3 g de microcarregagores/mL, e um θm máximo de 21±2,2 segundos para uma velocidade de rotação de 50 rpm. Os cultivos de expansão de CEMs derivadas de cordão umbilical e tecido adiposo em 1 e 3 g/L de Cultispher®S, usando o meio de cultivo alfa MEM com 10 % SFB, confirmaram a melhor modulação da agregação apresentada no BEVT, em comparação com o frasco Spinner, em condições de baixo cisalhamento, confirmadas através da atividade da enzima LDH, e com transferência de oxigênio adequada, obtendo fatores de expansão de até 17 vezes de CEMs viáveis e funcionais. Desta forma, estes resultados apresentam o BEVT como uma alternativa bastante promissória para o cultivo de CEMs em larga escala para a terapia celular.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 1590011porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarCélulas estromais mesenquimais (CEMs) humanasBiorreator de escoamento em vórtices de Taylor (BEVT)Agregados em sistemas de cultivo agitado baseado em microcarregadoresCritério de suspensão (Ns1)Tempos de mistura (θm)Human mesenchymal stromal cells (hMSCs)MicrocarriersTaylor Vortex Flow BioreactorOxygen transferShear stressMixing timeMinimum agitation speed for complete solid suspension (Ns1)Células estromales mesenquimaisBioreactor de flujo en vórtices de TaylorMicrocargadoresTiempo de mezclaENGENHARIAS::ENGENHARIA QUIMICA::OPERACOES INDUSTRIAIS E EQUIPAMENTOS PARA ENGENHARIA QUIMICAAvaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimaisEvaluation of Taylor vortex flow bioreactor performance for mesenchymal stromal cell expansioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnlinea35fad8c-e6aa-4839-b89a-4a1eb6fcd885info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11716/6/license.txtae0398b6f8b235e40ad82cba6c50031dMD56ORIGINALGIL_Liseth_2019.pdfGIL_Liseth_2019.pdfapplication/pdf4346550https://repositorio.ufscar.br/bitstream/ufscar/11716/7/GIL_Liseth_2019.pdf6b5d209f6affd8c38ce02af61b0a08f7MD57TEXTGIL_Liseth_2019.pdf.txtGIL_Liseth_2019.pdf.txtExtracted texttext/plain344805https://repositorio.ufscar.br/bitstream/ufscar/11716/8/GIL_Liseth_2019.pdf.txt9955533634fb9f764e5e58f7478e61b6MD58THUMBNAILGIL_Liseth_2019.pdf.jpgGIL_Liseth_2019.pdf.jpgIM Thumbnailimage/jpeg6099https://repositorio.ufscar.br/bitstream/ufscar/11716/9/GIL_Liseth_2019.pdf.jpgdb1008fce5711d37d7b81e96095825bbMD59ufscar/117162023-09-18 18:31:23.359oai:repositorio.ufscar.br:ufscar/11716TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:23Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
dc.title.alternative.eng.fl_str_mv |
Evaluation of Taylor vortex flow bioreactor performance for mesenchymal stromal cell expansion |
title |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
spellingShingle |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais Gil, Liseth Viviana González Células estromais mesenquimais (CEMs) humanas Biorreator de escoamento em vórtices de Taylor (BEVT) Agregados em sistemas de cultivo agitado baseado em microcarregadores Critério de suspensão (Ns1) Tempos de mistura (θm) Human mesenchymal stromal cells (hMSCs) Microcarriers Taylor Vortex Flow Bioreactor Oxygen transfer Shear stress Mixing time Minimum agitation speed for complete solid suspension (Ns1) Células estromales mesenquimais Bioreactor de flujo en vórtices de Taylor Microcargadores Tiempo de mezcla ENGENHARIAS::ENGENHARIA QUIMICA::OPERACOES INDUSTRIAIS E EQUIPAMENTOS PARA ENGENHARIA QUIMICA |
title_short |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
title_full |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
title_fullStr |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
title_full_unstemmed |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
title_sort |
Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais |
author |
Gil, Liseth Viviana González |
author_facet |
Gil, Liseth Viviana González |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0402210458004107 |
dc.contributor.author.fl_str_mv |
Gil, Liseth Viviana González |
dc.contributor.advisor1.fl_str_mv |
Suazo, Cláudio Alberto Torres |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9591447226240450 |
dc.contributor.authorID.fl_str_mv |
f4640cef-0056-4985-9bae-9be9f0514000 |
contributor_str_mv |
Suazo, Cláudio Alberto Torres |
dc.subject.por.fl_str_mv |
Células estromais mesenquimais (CEMs) humanas Biorreator de escoamento em vórtices de Taylor (BEVT) Agregados em sistemas de cultivo agitado baseado em microcarregadores Critério de suspensão (Ns1) Tempos de mistura (θm) |
topic |
Células estromais mesenquimais (CEMs) humanas Biorreator de escoamento em vórtices de Taylor (BEVT) Agregados em sistemas de cultivo agitado baseado em microcarregadores Critério de suspensão (Ns1) Tempos de mistura (θm) Human mesenchymal stromal cells (hMSCs) Microcarriers Taylor Vortex Flow Bioreactor Oxygen transfer Shear stress Mixing time Minimum agitation speed for complete solid suspension (Ns1) Células estromales mesenquimais Bioreactor de flujo en vórtices de Taylor Microcargadores Tiempo de mezcla ENGENHARIAS::ENGENHARIA QUIMICA::OPERACOES INDUSTRIAIS E EQUIPAMENTOS PARA ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Human mesenchymal stromal cells (hMSCs) Microcarriers Taylor Vortex Flow Bioreactor Oxygen transfer Shear stress Mixing time Minimum agitation speed for complete solid suspension (Ns1) |
dc.subject.spa.fl_str_mv |
Células estromales mesenquimais Bioreactor de flujo en vórtices de Taylor Microcargadores Tiempo de mezcla |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA::OPERACOES INDUSTRIAIS E EQUIPAMENTOS PARA ENGENHARIA QUIMICA |
description |
Interest in the use of mesenchymal stromal cells (MSCs) has increased in the last 10 years because of the increasing discovery of its special characteristics for the treatment of diseases through cell therapy or tissue engineering. Despite being in the majority of postnatal organs and tissues, the amount of MSCs required to initiate any clinical treatment is insufficient and therefore the necessity of its in vitro expansion. Cultivation systems with the use of microcarriers and bioreactors, such as the stirred tank, are presented as the immediate proposal, allowing to obtain high cellular densities in a 3D environment. However, the stirred tank presents some limitations related to the distribution of hydrodynamic forces within the bioreactor and the difficulty in controlling the size of aggregates formed during cultivation, ultimately affecting the process yield of obtaining viable cells. A highly promising bioreactor proposal for presenting low and more homogeneous shear stresses, satisfactory mass transfer and ease of scaling is the Taylor Vortex Flow Bioreactor (TVFB). In a preliminary study, the BEVT, with a work volume of 60 mL, was promising in the cultivation of a line of immortalized CEMs attached to microcarriers, presenting controlled sizes of cellular aggregates (<400 μm) under conditions of low shear stresses and with sufficient oxygen transfer. In this sense, the present work involved the construction and the study of a BEVT with a work volume of 100 mL, for the cultivation of primary CEMs currently used in clinical treatments. Thus, the additional evaluation of important hydrodynamic parameters, such as the minimum velocity of suspension of particles (Ns1) and time of mixing (θm) in different conditions of rotation, were approached for two internal cylinder configurations, named in this study as round and deformed. In this evaluation the BEVT with the deformed inner cylinder presented better performance and was chosen in the culture studies. For this configuration Ns1 values between 70 and 90 rpm were obtained using a concentration of 1 to 3 g of microcarregages/mL and a maximum θm of 21±2,2 seconds for a rotation speed of 50 rpm. Cultivation of umbilical cord derived CEMs cultures and Cultispher®S 1 and 3 g / L adipose tissue using the 10% SFB alpha MEM culture medium confirmed the best modulation of the aggregation presented in the BEVT, compared to the Spinner flask, under low shear conditions, confirmed by the LDH enzyme activity, and with adequate oxygen transfer, obtaining factors of expansion of up to 17 times of viable and functional CEMs. Thus, these results present the BEVT as a very promising alternative for the cultivation of large-scale CEMs for cell therapy. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-08-12T20:12:50Z |
dc.date.available.fl_str_mv |
2019-08-12T20:12:50Z |
dc.date.issued.fl_str_mv |
2019-04-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GIL, Liseth Viviana González. Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais. 2019. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11716. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/11716 |
identifier_str_mv |
GIL, Liseth Viviana González. Avaliação do desempenho do biorreator de vórtices de Taylor na expansão de células estromais mesenquimais. 2019. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11716. |
url |
https://repositorio.ufscar.br/handle/ufscar/11716 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.authority.fl_str_mv |
a35fad8c-e6aa-4839-b89a-4a1eb6fcd885 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/11716/6/license.txt https://repositorio.ufscar.br/bitstream/ufscar/11716/7/GIL_Liseth_2019.pdf https://repositorio.ufscar.br/bitstream/ufscar/11716/8/GIL_Liseth_2019.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/11716/9/GIL_Liseth_2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d 6b5d209f6affd8c38ce02af61b0a08f7 9955533634fb9f764e5e58f7478e61b6 db1008fce5711d37d7b81e96095825bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715607392092160 |