Modelos de sobrevivência bivariados induzidos por fragilidade

Detalhes bibliográficos
Autor(a) principal: Bedia, Elizbeth Chipa
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/16629
Resumo: Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. The frailty distributions used in many studies include the gamma, inverse Gaussian (IG) or stable positive (SP) distributions. These distributions are usually chosen due to analytical and computational simplicity or due to some attractive property of the model. The choice of the frailty distribution is of fundamental importance in order to arrive at a good description of the dependence structure present in the data. An alternative to the problem of choosing the frailty model would be to choose only one family of frailty distributions and use it as a general model. In this work, we studied bivariate survival data with a semicompetiting risk structure (FINE; JIANG; CHAPPELL, 2001), and long-term bivariate data. In order to incorporate a dependence structure between the times of events, we propose the family of distributions Power variance function (PVF) as a shared frailty model which includes the above mentioned distributions. Data with a semicompeting risk structure arises as a variant of the competing risk structure. In the semicompeting risk framework, usually, two events are considered, namely, a terminal and a non-terminal. The terminal event censors the non-terminal event, but not vice versa. Generally, the two events are correlated. So the dependence between the terminal and non-terminal failure time is incorporated through the PVF shared frailty between the conditional transition rates of the illness-death model (XU; KALBFLEISCH; TAI, 2010), that is equivalent to a semicompeting risks problem. For long-term bivariate data, which are characterized by having a fraction of individuals non-susceptible to the event of interest after a long time, were considered situations in which there are two types of unobservable causes, where each cause is related to occurrence times of an event of interest. To model the dependence between the two times we introduce a PVF frailty variable. For both models, a simulation study is presented to evaluate the performance of the maximum likelihood method in the parameters estimation. Finally, colon cancer data are used in the application of the model with a semicompeting risk structure and Brazilian customer churn data in a financial institution are used in the application of the long-term models.
id SCAR_18c6cc100cf0dd24881472fd02f0baff
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16629
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Bedia, Elizbeth ChipaCancho, Vicente Garibayhttp://lattes.cnpq.br/3503233632044163Gallo, Alexsandro Giacomo GrimbertGuzmán, Jorge Luis Bazánhttp://lattes.cnpq.br/4037274656833325http://lattes.cnpq.br/7302778157579178http://lattes.cnpq.br/99703544792097584f371acf-a773-4d31-97e6-9cb09ce4a6c12022-09-19T12:02:19Z2022-09-19T12:02:19Z2022-07-18BEDIA, Elizbeth Chipa. Modelos de sobrevivência bivariados induzidos por fragilidade. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16629.https://repositorio.ufscar.br/handle/ufscar/16629Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. The frailty distributions used in many studies include the gamma, inverse Gaussian (IG) or stable positive (SP) distributions. These distributions are usually chosen due to analytical and computational simplicity or due to some attractive property of the model. The choice of the frailty distribution is of fundamental importance in order to arrive at a good description of the dependence structure present in the data. An alternative to the problem of choosing the frailty model would be to choose only one family of frailty distributions and use it as a general model. In this work, we studied bivariate survival data with a semicompetiting risk structure (FINE; JIANG; CHAPPELL, 2001), and long-term bivariate data. In order to incorporate a dependence structure between the times of events, we propose the family of distributions Power variance function (PVF) as a shared frailty model which includes the above mentioned distributions. Data with a semicompeting risk structure arises as a variant of the competing risk structure. In the semicompeting risk framework, usually, two events are considered, namely, a terminal and a non-terminal. The terminal event censors the non-terminal event, but not vice versa. Generally, the two events are correlated. So the dependence between the terminal and non-terminal failure time is incorporated through the PVF shared frailty between the conditional transition rates of the illness-death model (XU; KALBFLEISCH; TAI, 2010), that is equivalent to a semicompeting risks problem. For long-term bivariate data, which are characterized by having a fraction of individuals non-susceptible to the event of interest after a long time, were considered situations in which there are two types of unobservable causes, where each cause is related to occurrence times of an event of interest. To model the dependence between the two times we introduce a PVF frailty variable. For both models, a simulation study is presented to evaluate the performance of the maximum likelihood method in the parameters estimation. Finally, colon cancer data are used in the application of the model with a semicompeting risk structure and Brazilian customer churn data in a financial institution are used in the application of the long-term models.Modelos de fragilidade foram desenvolvidos para quantificar tanto a heterogeneidade quanto a associação em dados multivariados de tempos de eventos. As distribuições de fragilidade utilizadas em muitos estudos incluem as distribuições gama, Inversa Gaussiana (IG), ou a Positiva estável (PE). Estas distribuições geralmente são escolhidos devido à simplicidade analítica e computacional ou por alguma propriedade atrativa do modelo. A escolha da distribuição da fragilidade é de fundamental importância para assim chegar a uma boa descrição da estrutura de dependência presente nos dados. Uma alternativa para o problema da escolha do modelo de fragilidade seria escolher apenas uma família de distribuições de fragilidade e usá-la como modelo geral. Neste trabalho, estudamos dados de sobrevivência bivariados com estrutura de riscos semicompetitivos (FINE; JIANG; CHAPPELL, 2001) e dados bivariados de longa duração. Para incorporar uma estrutura de dependência entre os tempos de eventos propomos a família de distribuições Power variance function (PVF) como modelo de fragilidade compartilhada a qual inclui as distribuições antes mencionadas. Dados com estrutura de riscos semicompetitivos surge como uma variante da estrutura de riscos competitivos. Na estrutura de riscos semicompetitivos, usualmente, dois eventos são considerados, a saber, um terminal e um não terminal. Sendo que, o evento terminal censura o evento não terminal, mas não vice-versa. Geralmente, os dois eventos estão correlacionados. Então a dependência entre o tempo de falha do evento terminal e o não terminal é incorporada através da fragilidade PVF compartilhada entre as taxas de transição condicional do modelo de doença-morte que é equivalente a um problema de riscos semicompetitivos (XU; KALBFLEISCH; TAI, 2010). Para os dados bivariados de longa duração, que caracterizam-se por possuir uma fração de indivíduos não suscetíveis ao evento de interesse após um longo tempo, foram consideradas situações em que existem dois tipos de causas não observáveis, onde cada causa está relacionada com tempos de ocorrência de um evento de interesse. Para modelar a dependência entre os dois tempos introduzimos uma variável de fragilidade PVF. Para ambos os modelos, um estudo de simulação é apresentado para avaliar o desempenho do método de máxima verossimilhança na estimativa de parâmetros. Finalmente, dados de câncer de cólon são usados na aplicação do modelo com estrutura de riscos semicompetitivos e dados de churn de clientes brasileiros em uma instituição financeira são usados na aplicação do modelos de longa duração.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de financiamento 001porUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessModelo de fragilidade compartilhadaRiscos semicompetitivosProcessos de doença - morteModelos de longa duraçãoModelos de fragilidade discretaShared frailty modelSemicompeting risksIllness-death processLong-term modelDiscrete fragility modelsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelos de sobrevivência bivariados induzidos por fragilidadeBivariate survival models induced by frailtyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006001cb0d8cb-f48c-48d8-ab4f-bd428cd640ecreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16629/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54ORIGINALTese corregida Elizbeth-UFSCar.pdfTese corregida Elizbeth-UFSCar.pdfTese versão revisada de Elizbethapplication/pdf1990423https://repositorio.ufscar.br/bitstream/ufscar/16629/1/Tese%20corregida%20Elizbeth-UFSCar.pdf956e4a7f5ac3299db8498adb449c2154MD51Carta comprovante PIPGEs-Elizbeth.pdfCarta comprovante PIPGEs-Elizbeth.pdfCarta comprovante em formato PDFapplication/pdf90593https://repositorio.ufscar.br/bitstream/ufscar/16629/3/Carta%20comprovante%20PIPGEs-Elizbeth.pdf95c34542bc24f5f3b39ba714acd17001MD53TEXTTese corregida Elizbeth-UFSCar.pdf.txtTese corregida Elizbeth-UFSCar.pdf.txtExtracted texttext/plain219351https://repositorio.ufscar.br/bitstream/ufscar/16629/5/Tese%20corregida%20Elizbeth-UFSCar.pdf.txt04dedbfd9dd92f6e348c7755ffacec03MD55Carta comprovante PIPGEs-Elizbeth.pdf.txtCarta comprovante PIPGEs-Elizbeth.pdf.txtExtracted texttext/plain1184https://repositorio.ufscar.br/bitstream/ufscar/16629/7/Carta%20comprovante%20PIPGEs-Elizbeth.pdf.txt3ec15d49b1e40fefa9454c4c462770d2MD57THUMBNAILTese corregida Elizbeth-UFSCar.pdf.jpgTese corregida Elizbeth-UFSCar.pdf.jpgIM Thumbnailimage/jpeg7737https://repositorio.ufscar.br/bitstream/ufscar/16629/6/Tese%20corregida%20Elizbeth-UFSCar.pdf.jpga493ac1ffd7c72b2b2aef218d36d6d56MD56Carta comprovante PIPGEs-Elizbeth.pdf.jpgCarta comprovante PIPGEs-Elizbeth.pdf.jpgIM Thumbnailimage/jpeg8618https://repositorio.ufscar.br/bitstream/ufscar/16629/8/Carta%20comprovante%20PIPGEs-Elizbeth.pdf.jpgeee764aca2e1013778cd8b2073f60aadMD58ufscar/166292023-09-18 18:32:20.617oai:repositorio.ufscar.br:ufscar/16629Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelos de sobrevivência bivariados induzidos por fragilidade
dc.title.alternative.eng.fl_str_mv Bivariate survival models induced by frailty
title Modelos de sobrevivência bivariados induzidos por fragilidade
spellingShingle Modelos de sobrevivência bivariados induzidos por fragilidade
Bedia, Elizbeth Chipa
Modelo de fragilidade compartilhada
Riscos semicompetitivos
Processos de doença - morte
Modelos de longa duração
Modelos de fragilidade discreta
Shared frailty model
Semicompeting risks
Illness-death process
Long-term model
Discrete fragility models
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Modelos de sobrevivência bivariados induzidos por fragilidade
title_full Modelos de sobrevivência bivariados induzidos por fragilidade
title_fullStr Modelos de sobrevivência bivariados induzidos por fragilidade
title_full_unstemmed Modelos de sobrevivência bivariados induzidos por fragilidade
title_sort Modelos de sobrevivência bivariados induzidos por fragilidade
author Bedia, Elizbeth Chipa
author_facet Bedia, Elizbeth Chipa
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9970354479209758
dc.contributor.author.fl_str_mv Bedia, Elizbeth Chipa
dc.contributor.advisor1.fl_str_mv Cancho, Vicente Garibay
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3503233632044163
dc.contributor.advisor-co1.fl_str_mv Gallo, Alexsandro Giacomo Grimbert
Guzmán, Jorge Luis Bazán
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4037274656833325
http://lattes.cnpq.br/7302778157579178
dc.contributor.authorID.fl_str_mv 4f371acf-a773-4d31-97e6-9cb09ce4a6c1
contributor_str_mv Cancho, Vicente Garibay
Gallo, Alexsandro Giacomo Grimbert
Guzmán, Jorge Luis Bazán
dc.subject.por.fl_str_mv Modelo de fragilidade compartilhada
Riscos semicompetitivos
Processos de doença - morte
Modelos de longa duração
Modelos de fragilidade discreta
topic Modelo de fragilidade compartilhada
Riscos semicompetitivos
Processos de doença - morte
Modelos de longa duração
Modelos de fragilidade discreta
Shared frailty model
Semicompeting risks
Illness-death process
Long-term model
Discrete fragility models
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Shared frailty model
Semicompeting risks
Illness-death process
Long-term model
Discrete fragility models
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. The frailty distributions used in many studies include the gamma, inverse Gaussian (IG) or stable positive (SP) distributions. These distributions are usually chosen due to analytical and computational simplicity or due to some attractive property of the model. The choice of the frailty distribution is of fundamental importance in order to arrive at a good description of the dependence structure present in the data. An alternative to the problem of choosing the frailty model would be to choose only one family of frailty distributions and use it as a general model. In this work, we studied bivariate survival data with a semicompetiting risk structure (FINE; JIANG; CHAPPELL, 2001), and long-term bivariate data. In order to incorporate a dependence structure between the times of events, we propose the family of distributions Power variance function (PVF) as a shared frailty model which includes the above mentioned distributions. Data with a semicompeting risk structure arises as a variant of the competing risk structure. In the semicompeting risk framework, usually, two events are considered, namely, a terminal and a non-terminal. The terminal event censors the non-terminal event, but not vice versa. Generally, the two events are correlated. So the dependence between the terminal and non-terminal failure time is incorporated through the PVF shared frailty between the conditional transition rates of the illness-death model (XU; KALBFLEISCH; TAI, 2010), that is equivalent to a semicompeting risks problem. For long-term bivariate data, which are characterized by having a fraction of individuals non-susceptible to the event of interest after a long time, were considered situations in which there are two types of unobservable causes, where each cause is related to occurrence times of an event of interest. To model the dependence between the two times we introduce a PVF frailty variable. For both models, a simulation study is presented to evaluate the performance of the maximum likelihood method in the parameters estimation. Finally, colon cancer data are used in the application of the model with a semicompeting risk structure and Brazilian customer churn data in a financial institution are used in the application of the long-term models.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-09-19T12:02:19Z
dc.date.available.fl_str_mv 2022-09-19T12:02:19Z
dc.date.issued.fl_str_mv 2022-07-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BEDIA, Elizbeth Chipa. Modelos de sobrevivência bivariados induzidos por fragilidade. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16629.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16629
identifier_str_mv BEDIA, Elizbeth Chipa. Modelos de sobrevivência bivariados induzidos por fragilidade. 2022. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16629.
url https://repositorio.ufscar.br/handle/ufscar/16629
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 1cb0d8cb-f48c-48d8-ab4f-bd428cd640ec
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16629/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16629/1/Tese%20corregida%20Elizbeth-UFSCar.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16629/3/Carta%20comprovante%20PIPGEs-Elizbeth.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16629/5/Tese%20corregida%20Elizbeth-UFSCar.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16629/7/Carta%20comprovante%20PIPGEs-Elizbeth.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16629/6/Tese%20corregida%20Elizbeth-UFSCar.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/16629/8/Carta%20comprovante%20PIPGEs-Elizbeth.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
956e4a7f5ac3299db8498adb449c2154
95c34542bc24f5f3b39ba714acd17001
04dedbfd9dd92f6e348c7755ffacec03
3ec15d49b1e40fefa9454c4c462770d2
a493ac1ffd7c72b2b2aef218d36d6d56
eee764aca2e1013778cd8b2073f60aad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715652334059520