Some extensions in measurement error models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/11323 |
Resumo: | In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Student’s t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature. |
id |
SCAR_1ab93b07504e39a418875ff16780d9d7 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/11323 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Cáceres Tomaya, Lorena YanetAndrade Filho, Mario de Castrohttp://lattes.cnpq.br/6518161034709249http://lattes.cnpq.br/014592196075474637fb6949-3b96-48d6-8e79-53fe430b794e2019-04-26T19:09:36Z2019-04-26T19:09:36Z2018-12-14CÁCERES TOMAYA, Lorena Yanet. Some extensions in measurement error models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11323.https://repositorio.ufscar.br/handle/ufscar/11323In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Student’s t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature.Neste trabalho abordamos três contribuições diferentes em modelos com erros de medição (MEM). Inicialmente estudamos inferência pelo método de máxima verossimilhança penalizada em MEM sob a suposição de normalidade. A metodologia baseia-se no método proposto por Firth (1993), o qual pode ser usado para melhorar algumas propriedades assintóticas de os estimadores de máxima verossimilhança. Em seguida, propomos construir dois novos métodos de estimação baseados na inferência fiducial generalizada para os parâmetros de precisão e a variabilidade produto no modelo de Grubbs para o caso de dois instrumentos. O primeiro método é baseado em uma quantidade pivotal generalizada fiducial e o outro é baseado no método da distribuição fiducial generalizada. Comparações com duas abordagens existentes são reportadas. Finalmente, propomos estudar inferência em um MEM heterocedástico em que as variâncias dos erros são consideradas conhecidas. Nós desenvolvemos um modelo que assume uma distribuição t-assimétrica para a covariável verdadeira e uma distribuição t de Student centrada para os termos dos erros. O modelo proposto permite acomodar assimetria e cauda pesada nos dados, enquanto os graus de liberdade das distribuições podem ser diferentes. Usamos o método de máxima verossimilhança para estimar os parâmetros do modelo e calculá-los através de um algoritmo tipo EM. Todas as metodologias propostas são avaliadas numericamente em estudos de simulação e são ilustradas com conjuntos de dados reais extraídos da literatura.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarModelo com erros nas variáveisInferência fiducialErros heteroscedásticosVerossimilhança penalizadaDistribuição t-assimétricaErrors-in-variables modelFiducial inferenceHeteroscedastic errorsPenalized likelihoodSkew-t distributionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICASome extensions in measurement error modelsAlgumas extensões em modelos com erros de mediçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline0b059848-1fa8-41fb-964e-7cdcf2c26f85info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseLYCT.pdfTeseLYCT.pdfArquivos deste itemapplication/pdf1477100https://repositorio.ufscar.br/bitstream/ufscar/11323/1/TeseLYCT.pdf8eadbee02a93dbb34309c0dfd12b359bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11323/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54TEXTTeseLYCT.pdf.txtTeseLYCT.pdf.txtExtracted texttext/plain187373https://repositorio.ufscar.br/bitstream/ufscar/11323/5/TeseLYCT.pdf.txt3d6f0e2204dc88a2b8601249e6547e23MD55THUMBNAILTeseLYCT.pdf.jpgTeseLYCT.pdf.jpgIM Thumbnailimage/jpeg3502https://repositorio.ufscar.br/bitstream/ufscar/11323/6/TeseLYCT.pdf.jpgdf3dad50e4960f6afea3c2c92842bba1MD56ufscar/113232023-09-18 18:31:22.099oai:repositorio.ufscar.br:ufscar/11323TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Some extensions in measurement error models |
dc.title.alternative.por.fl_str_mv |
Algumas extensões em modelos com erros de medição |
title |
Some extensions in measurement error models |
spellingShingle |
Some extensions in measurement error models Cáceres Tomaya, Lorena Yanet Modelo com erros nas variáveis Inferência fiducial Erros heteroscedásticos Verossimilhança penalizada Distribuição t-assimétrica Errors-in-variables model Fiducial inference Heteroscedastic errors Penalized likelihood Skew-t distribution CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Some extensions in measurement error models |
title_full |
Some extensions in measurement error models |
title_fullStr |
Some extensions in measurement error models |
title_full_unstemmed |
Some extensions in measurement error models |
title_sort |
Some extensions in measurement error models |
author |
Cáceres Tomaya, Lorena Yanet |
author_facet |
Cáceres Tomaya, Lorena Yanet |
author_role |
author |
dc.contributor.advisor.none.fl_str_mv |
|
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0145921960754746 |
dc.contributor.author.fl_str_mv |
Cáceres Tomaya, Lorena Yanet |
dc.contributor.advisor1.fl_str_mv |
Andrade Filho, Mario de Castro |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6518161034709249 |
dc.contributor.authorID.fl_str_mv |
37fb6949-3b96-48d6-8e79-53fe430b794e |
contributor_str_mv |
Andrade Filho, Mario de Castro |
dc.subject.por.fl_str_mv |
Modelo com erros nas variáveis Inferência fiducial Erros heteroscedásticos Verossimilhança penalizada Distribuição t-assimétrica |
topic |
Modelo com erros nas variáveis Inferência fiducial Erros heteroscedásticos Verossimilhança penalizada Distribuição t-assimétrica Errors-in-variables model Fiducial inference Heteroscedastic errors Penalized likelihood Skew-t distribution CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Errors-in-variables model Fiducial inference Heteroscedastic errors Penalized likelihood Skew-t distribution |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Student’s t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-12-14 |
dc.date.accessioned.fl_str_mv |
2019-04-26T19:09:36Z |
dc.date.available.fl_str_mv |
2019-04-26T19:09:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CÁCERES TOMAYA, Lorena Yanet. Some extensions in measurement error models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11323. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/11323 |
identifier_str_mv |
CÁCERES TOMAYA, Lorena Yanet. Some extensions in measurement error models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11323. |
url |
https://repositorio.ufscar.br/handle/ufscar/11323 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.authority.fl_str_mv |
0b059848-1fa8-41fb-964e-7cdcf2c26f85 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/11323/1/TeseLYCT.pdf https://repositorio.ufscar.br/bitstream/ufscar/11323/4/license.txt https://repositorio.ufscar.br/bitstream/ufscar/11323/5/TeseLYCT.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/11323/6/TeseLYCT.pdf.jpg |
bitstream.checksum.fl_str_mv |
8eadbee02a93dbb34309c0dfd12b359b ae0398b6f8b235e40ad82cba6c50031d 3d6f0e2204dc88a2b8601249e6547e23 df3dad50e4960f6afea3c2c92842bba1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715603588907008 |