Some extensions in measurement error models

Detalhes bibliográficos
Autor(a) principal: Cáceres Tomaya, Lorena Yanet
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11323
Resumo: In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Student’s t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature.
id SCAR_1ab93b07504e39a418875ff16780d9d7
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11323
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Cáceres Tomaya, Lorena YanetAndrade Filho, Mario de Castrohttp://lattes.cnpq.br/6518161034709249http://lattes.cnpq.br/014592196075474637fb6949-3b96-48d6-8e79-53fe430b794e2019-04-26T19:09:36Z2019-04-26T19:09:36Z2018-12-14CÁCERES TOMAYA, Lorena Yanet. Some extensions in measurement error models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11323.https://repositorio.ufscar.br/handle/ufscar/11323In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Student’s t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature.Neste trabalho abordamos três contribuições diferentes em modelos com erros de medição (MEM). Inicialmente estudamos inferência pelo método de máxima verossimilhança penalizada em MEM sob a suposição de normalidade. A metodologia baseia-se no método proposto por Firth (1993), o qual pode ser usado para melhorar algumas propriedades assintóticas de os estimadores de máxima verossimilhança. Em seguida, propomos construir dois novos métodos de estimação baseados na inferência fiducial generalizada para os parâmetros de precisão e a variabilidade produto no modelo de Grubbs para o caso de dois instrumentos. O primeiro método é baseado em uma quantidade pivotal generalizada fiducial e o outro é baseado no método da distribuição fiducial generalizada. Comparações com duas abordagens existentes são reportadas. Finalmente, propomos estudar inferência em um MEM heterocedástico em que as variâncias dos erros são consideradas conhecidas. Nós desenvolvemos um modelo que assume uma distribuição t-assimétrica para a covariável verdadeira e uma distribuição t de Student centrada para os termos dos erros. O modelo proposto permite acomodar assimetria e cauda pesada nos dados, enquanto os graus de liberdade das distribuições podem ser diferentes. Usamos o método de máxima verossimilhança para estimar os parâmetros do modelo e calculá-los através de um algoritmo tipo EM. Todas as metodologias propostas são avaliadas numericamente em estudos de simulação e são ilustradas com conjuntos de dados reais extraídos da literatura.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarModelo com erros nas variáveisInferência fiducialErros heteroscedásticosVerossimilhança penalizadaDistribuição t-assimétricaErrors-in-variables modelFiducial inferenceHeteroscedastic errorsPenalized likelihoodSkew-t distributionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICASome extensions in measurement error modelsAlgumas extensões em modelos com erros de mediçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline0b059848-1fa8-41fb-964e-7cdcf2c26f85info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseLYCT.pdfTeseLYCT.pdfArquivos deste itemapplication/pdf1477100https://repositorio.ufscar.br/bitstream/ufscar/11323/1/TeseLYCT.pdf8eadbee02a93dbb34309c0dfd12b359bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11323/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54TEXTTeseLYCT.pdf.txtTeseLYCT.pdf.txtExtracted texttext/plain187373https://repositorio.ufscar.br/bitstream/ufscar/11323/5/TeseLYCT.pdf.txt3d6f0e2204dc88a2b8601249e6547e23MD55THUMBNAILTeseLYCT.pdf.jpgTeseLYCT.pdf.jpgIM Thumbnailimage/jpeg3502https://repositorio.ufscar.br/bitstream/ufscar/11323/6/TeseLYCT.pdf.jpgdf3dad50e4960f6afea3c2c92842bba1MD56ufscar/113232023-09-18 18:31:22.099oai:repositorio.ufscar.br:ufscar/11323TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Some extensions in measurement error models
dc.title.alternative.por.fl_str_mv Algumas extensões em modelos com erros de medição
title Some extensions in measurement error models
spellingShingle Some extensions in measurement error models
Cáceres Tomaya, Lorena Yanet
Modelo com erros nas variáveis
Inferência fiducial
Erros heteroscedásticos
Verossimilhança penalizada
Distribuição t-assimétrica
Errors-in-variables model
Fiducial inference
Heteroscedastic errors
Penalized likelihood
Skew-t distribution
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Some extensions in measurement error models
title_full Some extensions in measurement error models
title_fullStr Some extensions in measurement error models
title_full_unstemmed Some extensions in measurement error models
title_sort Some extensions in measurement error models
author Cáceres Tomaya, Lorena Yanet
author_facet Cáceres Tomaya, Lorena Yanet
author_role author
dc.contributor.advisor.none.fl_str_mv
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0145921960754746
dc.contributor.author.fl_str_mv Cáceres Tomaya, Lorena Yanet
dc.contributor.advisor1.fl_str_mv Andrade Filho, Mario de Castro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6518161034709249
dc.contributor.authorID.fl_str_mv 37fb6949-3b96-48d6-8e79-53fe430b794e
contributor_str_mv Andrade Filho, Mario de Castro
dc.subject.por.fl_str_mv Modelo com erros nas variáveis
Inferência fiducial
Erros heteroscedásticos
Verossimilhança penalizada
Distribuição t-assimétrica
topic Modelo com erros nas variáveis
Inferência fiducial
Erros heteroscedásticos
Verossimilhança penalizada
Distribuição t-assimétrica
Errors-in-variables model
Fiducial inference
Heteroscedastic errors
Penalized likelihood
Skew-t distribution
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Errors-in-variables model
Fiducial inference
Heteroscedastic errors
Penalized likelihood
Skew-t distribution
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Student’s t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature.
publishDate 2018
dc.date.issued.fl_str_mv 2018-12-14
dc.date.accessioned.fl_str_mv 2019-04-26T19:09:36Z
dc.date.available.fl_str_mv 2019-04-26T19:09:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CÁCERES TOMAYA, Lorena Yanet. Some extensions in measurement error models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11323.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11323
identifier_str_mv CÁCERES TOMAYA, Lorena Yanet. Some extensions in measurement error models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11323.
url https://repositorio.ufscar.br/handle/ufscar/11323
dc.language.iso.fl_str_mv eng
language eng
dc.relation.authority.fl_str_mv 0b059848-1fa8-41fb-964e-7cdcf2c26f85
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11323/1/TeseLYCT.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11323/4/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11323/5/TeseLYCT.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11323/6/TeseLYCT.pdf.jpg
bitstream.checksum.fl_str_mv 8eadbee02a93dbb34309c0dfd12b359b
ae0398b6f8b235e40ad82cba6c50031d
3d6f0e2204dc88a2b8601249e6547e23
df3dad50e4960f6afea3c2c92842bba1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715603588907008