Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/10108 |
Resumo: | The primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific glass-ceramic composition of this system was synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass was examined by differential scanning calorimetry and infrared spectroscopy. The results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glasses, on the structural parameters of NASICON-like phase and on the electrical properties of the glassceramics. Hence, a set of sixteen compositions of this system was synthesized. The results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glassceramics are notably dependent on the unit cell volume of the NASICON-type structure, achieving total ionic conductivities of up to 3x10-4 Ω−1cm−1. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements were followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the investigated glass-ceramics to be determined. X-ray photoelectron spectroscopy, in turn, was applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations at low potentials and by the oxidation of O-2 anions at high potentials. A similar behavior at high potentials was also encountered for other well-known Li-ion conducting NASICON-like phosphate suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates. |
id |
SCAR_25d08e41af47ae36f56ba6009082e726 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/10108 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Nuernberg, Rafael BianchiniRodrigues, Ana Candida Martinshttp://lattes.cnpq.br/4499231813051400Pradel, Anniehttp://lattes.cnpq.br/62612249242642200d33aaba-29f1-430f-834d-a21b9418a8672018-05-23T00:11:41Z2018-05-23T00:11:41Z2018-03-22NUERNBERG, Rafael Bianchini. Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3. 2018. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10108.https://repositorio.ufscar.br/handle/ufscar/10108The primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific glass-ceramic composition of this system was synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass was examined by differential scanning calorimetry and infrared spectroscopy. The results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glasses, on the structural parameters of NASICON-like phase and on the electrical properties of the glassceramics. Hence, a set of sixteen compositions of this system was synthesized. The results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glassceramics are notably dependent on the unit cell volume of the NASICON-type structure, achieving total ionic conductivities of up to 3x10-4 Ω−1cm−1. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements were followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the investigated glass-ceramics to be determined. X-ray photoelectron spectroscopy, in turn, was applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations at low potentials and by the oxidation of O-2 anions at high potentials. A similar behavior at high potentials was also encountered for other well-known Li-ion conducting NASICON-like phosphate suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates.O principal objetivo do presente trabalho é desenvolver uma nova vitrocerâmica de alta condutividade de íons lítio com fase cristalina NASICON. Portanto, este trabalho introduz uma série de composições do tipo NASICON baseadas no sistema Li1+xCrx(GeyTi1-y)2-x(PO4)3. Primeiramente, uma composição específica desse sistema foi sintetizada pela rota tradicional de fusão de vidros seguida de cristalização. O comportamento de cristalização do vidro precursor é examinado por técnicas de calorimetria diferencial exploratória e espectroscopia de infravermelho. Os principais resultados obtidos nesta etapa indicaram que o vidro precursor apresenta nucleação homogênea, possui estabilidade vítrea apreciável e precipita a fase cristalina NASICON quando submetido a tratamento de cristalização. Estes resultados qualificam a rota vitrocerâmica como uma via de obtenção de eletrólitos sólidos a partir deste sistema composicional. Em uma segunda etapa é examinado o efeito da substituição de Ti por Cr e Ge na estabilidade frente à cristalização do vidro precursor, nos parâmetros estruturais da fase tipo NASICON e nas propriedades elétricas das vitrocerâmicas obtidas. Assim, um conjunto de dezesseis composições foi sintetizado a partir do sistema composicional proposto. Os resultados dessa etapa apontam que a estabilidade do vidro contra à cristalização aumenta com a substituição de Ti por Ge e Cr. Após o tratamento de cristalização todas as vitrocerâmicas apresentaram fase cristalina com estrutura do tipo NASICON e o volume da célula unitária diminui com a concentração de Ge e aumenta com a concentração de Cr, evidenciando a possibilidade de ajuste dos parâmetros estruturais da fase cristalina tipo NASICON. Além disso, a condutividade iônica e a energia de ativação para condução de lítio das vitrocerâmicas são notavelmente dependentes do volume da célula unitária, atingindo condutividades iônicas totais de até 3x10-4 Ω−1cm−1. Finalmente, a janela de estabilidade eletroquímica das vitrocerâmicas de maior condutividade iônica é investigada. Uma abordagem inovadora utilizando voltametria cíclica acompanhada in situ por espectroscopia de impedância, permitiu o estudo do efeito das reações de oxidação e redução nas propriedades elétricas das vitrocerâmicas em questão. Por sua vez, espectroscopia foto eletrônica de raios-X é aplicada para determinar quais espécies químicas sofreram redução e/ou oxidação após a aplicação de um potencial elétrico. Os resultados revelam que a janela de estabilidade eletroquímica desses eletrólitos é limitada pela redução de cátions Ti+4 em baixos potenciais e pela oxidação de aníons O-2 em altos potenciais. Um comportamento similar em altos potenciais foi encontrado para outro conhecido fosfato condutor de lítio do tipo NASICON, sugerindo que o comportamento em potenciais oxidantes pode ser generalizado para fosfatos com estrutura NASICON.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CNPq-GD: 140456/2014-7CAPES-PDSE: 88881.132930/2016-01porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarVitrocerâmicas condutoras por lítioEstabilidade contra à cristalizaçãoEstrutura NASICONCondutividade iônicaEstabilidade eletroquímicaLi ion-conducting glass-ceramicsGlass stabilityNASICON-type structureIonic conductivityElectrochemical stabilityENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOSVitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3Lithium ion conducting glass-ceramics with nasicon-type structure based on the Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 systeminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline901b2e03-1fc6-4525-8d1a-d61ea51a9dc4info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/10108/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53ORIGINALNUERNBERG_Rafael_2018.pdfNUERNBERG_Rafael_2018.pdfapplication/pdf7377566https://repositorio.ufscar.br/bitstream/ufscar/10108/4/NUERNBERG_Rafael_2018.pdf800c06f670cd2fd77e723c1b12dc18b8MD54TEXTNUERNBERG_Rafael_2018.pdf.txtNUERNBERG_Rafael_2018.pdf.txtExtracted texttext/plain270777https://repositorio.ufscar.br/bitstream/ufscar/10108/5/NUERNBERG_Rafael_2018.pdf.txtfd2df9b0cd7f807f69128ac46dc58cf6MD55THUMBNAILNUERNBERG_Rafael_2018.pdf.jpgNUERNBERG_Rafael_2018.pdf.jpgIM Thumbnailimage/jpeg6672https://repositorio.ufscar.br/bitstream/ufscar/10108/6/NUERNBERG_Rafael_2018.pdf.jpg72b2eb5cf313170fc4683b9e8c2e0844MD56ufscar/101082023-09-18 18:31:15.072oai:repositorio.ufscar.br:ufscar/10108TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:15Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
dc.title.alternative.eng.fl_str_mv |
Lithium ion conducting glass-ceramics with nasicon-type structure based on the Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 system |
title |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
spellingShingle |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 Nuernberg, Rafael Bianchini Vitrocerâmicas condutoras por lítio Estabilidade contra à cristalização Estrutura NASICON Condutividade iônica Estabilidade eletroquímica Li ion-conducting glass-ceramics Glass stability NASICON-type structure Ionic conductivity Electrochemical stability ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS |
title_short |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
title_full |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
title_fullStr |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
title_full_unstemmed |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
title_sort |
Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3 |
author |
Nuernberg, Rafael Bianchini |
author_facet |
Nuernberg, Rafael Bianchini |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6261224924264220 |
dc.contributor.author.fl_str_mv |
Nuernberg, Rafael Bianchini |
dc.contributor.advisor1.fl_str_mv |
Rodrigues, Ana Candida Martins |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4499231813051400 |
dc.contributor.advisor-co1.fl_str_mv |
Pradel, Annie |
dc.contributor.authorID.fl_str_mv |
0d33aaba-29f1-430f-834d-a21b9418a867 |
contributor_str_mv |
Rodrigues, Ana Candida Martins Pradel, Annie |
dc.subject.por.fl_str_mv |
Vitrocerâmicas condutoras por lítio Estabilidade contra à cristalização Estrutura NASICON Condutividade iônica Estabilidade eletroquímica |
topic |
Vitrocerâmicas condutoras por lítio Estabilidade contra à cristalização Estrutura NASICON Condutividade iônica Estabilidade eletroquímica Li ion-conducting glass-ceramics Glass stability NASICON-type structure Ionic conductivity Electrochemical stability ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS |
dc.subject.eng.fl_str_mv |
Li ion-conducting glass-ceramics Glass stability NASICON-type structure Ionic conductivity Electrochemical stability |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS |
description |
The primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific glass-ceramic composition of this system was synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass was examined by differential scanning calorimetry and infrared spectroscopy. The results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glasses, on the structural parameters of NASICON-like phase and on the electrical properties of the glassceramics. Hence, a set of sixteen compositions of this system was synthesized. The results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glassceramics are notably dependent on the unit cell volume of the NASICON-type structure, achieving total ionic conductivities of up to 3x10-4 Ω−1cm−1. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements were followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the investigated glass-ceramics to be determined. X-ray photoelectron spectroscopy, in turn, was applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations at low potentials and by the oxidation of O-2 anions at high potentials. A similar behavior at high potentials was also encountered for other well-known Li-ion conducting NASICON-like phosphate suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-05-23T00:11:41Z |
dc.date.available.fl_str_mv |
2018-05-23T00:11:41Z |
dc.date.issued.fl_str_mv |
2018-03-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NUERNBERG, Rafael Bianchini. Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3. 2018. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10108. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/10108 |
identifier_str_mv |
NUERNBERG, Rafael Bianchini. Vitrocerâmicas condutoras de íon lítio com estrutura do tipo Nasicon baseadas no sistema Li1+X CrX (GeY Ti1-Y)2-X (PO4)3. 2018. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10108. |
url |
https://repositorio.ufscar.br/handle/ufscar/10108 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.authority.fl_str_mv |
901b2e03-1fc6-4525-8d1a-d61ea51a9dc4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/10108/3/license.txt https://repositorio.ufscar.br/bitstream/ufscar/10108/4/NUERNBERG_Rafael_2018.pdf https://repositorio.ufscar.br/bitstream/ufscar/10108/5/NUERNBERG_Rafael_2018.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/10108/6/NUERNBERG_Rafael_2018.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d 800c06f670cd2fd77e723c1b12dc18b8 fd2df9b0cd7f807f69128ac46dc58cf6 72b2eb5cf313170fc4683b9e8c2e0844 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715591039549440 |