Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/8133 |
Resumo: | The element germanium is part of the history of electronic equipment based on semiconductor from its early days with the invention of the transistor, until today with current research related to growth of germanium nanowires and their application in devices such as transistors, sensors, solar cells, etc. Different experimental methods can be used for obtaining germanium nanowires. Among these, one of the most widely used and efficient is the vapor-liquid-solid mechanism, in which vapor phase germanium is adsorbed onto a liquid seed metal catalyst, usually gold, and then precipitated at the liquid-solid interface, resulting in the nanowire. Although the metal has only the catalyst function, some atoms may diffuse along the nanowires and affect their properties. Then, one of the aims of this work was to synthesize germanium nanowires by the vapor-liquid-solid method with the use of five different catalysts – gold, silver, copper, indium and nickel – and verify the influence of the metal on structural properties of the nanowires. As result of this stage it was found that is possible to obtain nanowires basically composed of single crystalline germanium with diamond structure, without apparent defects, having long-range order and with length/ diameter ratio of 103, using all the tested metals. Also in this stage it was observed that the metal catalyst had an influence on: the settings of synthesis process, such as the temperature of the heat treatment and the synthesis temperature, and consequently in the germanium oxide around the nanowires; the diameters and diameter distributions of the nanowires, that lead to phonon confinement effect in nanowires with small diameters grown using nickel. Regarding applications, the current interest in germanium is justified by some of its properties such as high carrier mobility (electrons and holes), small values of indirect (0,66eV) and direct (0,8eV) energy gaps associated with high absorption coefficient of electromagnetic radiation in visible an infrared wavelength, and a large excitonic Bohr radius which highlights quantization effects. Thus, another objective of this research was to investigate electrical and optoelectronic characteristics of the produced germanium nanowires, constructing single nanowire devices and nanowire networks devices. The results of this part showed that: all the devices presented the semiconductor behavior expected for single crystalline germanium; the metal-semiconductor contact behavior – ohmic or Schottky – depended on the synthesis temperature and for the Schottky contacts, an insulating layer on the metal-nanowire interface, probably composed by germanium oxide, caused an increasing linear dependence of the barrier height with temperature; both thermal activation mechanism as well as variable range hopping were observed in germanium nanowire network devices, since small differences in diameter or on the surface of the nanowires can change the dominant transport mechanism, due to the large surface/ volume ratio of these nanostructures; the photoconductor and the photodiode constructed with germanium nanowire network presented photo-response in a wide range of illumination power in visible and infrared light wavelengths. Finally, complementing this PhD program, the activities of science dissemination developed at the IFSP campus Sertãozinho prepared this institution for scientific research in physics and showed the first results both in physics as in the physics teaching; motivating high school and college students to continue their studies. |
id |
SCAR_29366de2d6f331b4c56110014777be1c |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/8133 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Gouveia, Riama CoelhoChiquito, Adenilson Joséhttp://lattes.cnpq.br/7087360072774314http://lattes.cnpq.br/25000659161296575fd921f6-6793-4137-9cfd-df70d7629db52016-10-21T13:11:56Z2016-10-21T13:11:56Z2016-08-09GOUVEIA, Riama Coelho. Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações. 2016. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8133.https://repositorio.ufscar.br/handle/ufscar/8133The element germanium is part of the history of electronic equipment based on semiconductor from its early days with the invention of the transistor, until today with current research related to growth of germanium nanowires and their application in devices such as transistors, sensors, solar cells, etc. Different experimental methods can be used for obtaining germanium nanowires. Among these, one of the most widely used and efficient is the vapor-liquid-solid mechanism, in which vapor phase germanium is adsorbed onto a liquid seed metal catalyst, usually gold, and then precipitated at the liquid-solid interface, resulting in the nanowire. Although the metal has only the catalyst function, some atoms may diffuse along the nanowires and affect their properties. Then, one of the aims of this work was to synthesize germanium nanowires by the vapor-liquid-solid method with the use of five different catalysts – gold, silver, copper, indium and nickel – and verify the influence of the metal on structural properties of the nanowires. As result of this stage it was found that is possible to obtain nanowires basically composed of single crystalline germanium with diamond structure, without apparent defects, having long-range order and with length/ diameter ratio of 103, using all the tested metals. Also in this stage it was observed that the metal catalyst had an influence on: the settings of synthesis process, such as the temperature of the heat treatment and the synthesis temperature, and consequently in the germanium oxide around the nanowires; the diameters and diameter distributions of the nanowires, that lead to phonon confinement effect in nanowires with small diameters grown using nickel. Regarding applications, the current interest in germanium is justified by some of its properties such as high carrier mobility (electrons and holes), small values of indirect (0,66eV) and direct (0,8eV) energy gaps associated with high absorption coefficient of electromagnetic radiation in visible an infrared wavelength, and a large excitonic Bohr radius which highlights quantization effects. Thus, another objective of this research was to investigate electrical and optoelectronic characteristics of the produced germanium nanowires, constructing single nanowire devices and nanowire networks devices. The results of this part showed that: all the devices presented the semiconductor behavior expected for single crystalline germanium; the metal-semiconductor contact behavior – ohmic or Schottky – depended on the synthesis temperature and for the Schottky contacts, an insulating layer on the metal-nanowire interface, probably composed by germanium oxide, caused an increasing linear dependence of the barrier height with temperature; both thermal activation mechanism as well as variable range hopping were observed in germanium nanowire network devices, since small differences in diameter or on the surface of the nanowires can change the dominant transport mechanism, due to the large surface/ volume ratio of these nanostructures; the photoconductor and the photodiode constructed with germanium nanowire network presented photo-response in a wide range of illumination power in visible and infrared light wavelengths. Finally, complementing this PhD program, the activities of science dissemination developed at the IFSP campus Sertãozinho prepared this institution for scientific research in physics and showed the first results both in physics as in the physics teaching; motivating high school and college students to continue their studies.O elemento químico germânio faz parte da história dos equipamentos eletrônicos baseados em semicondutores desde seus anos iniciais, com a fabricação do primeiro transistor, até os dias de hoje, com pesquisas como as que estão sendo realizadas nos últimos anos sobre o crescimento de nanofios de germânio e sua aplicação em dispositivos como transistores, sensores, células solares, etc. Os nanofios de germânio podem ser sintetizados por vários métodos, sendo um dos mais comuns e eficientes o mecanismo vapor-líquido-sólido, em que vapor de germânio é adsorvido por um metal catalisador em estado líquido, geralmente ouro, e precipita-se na interface líquido-sólido compondo o nanofio cristalino. Ainda que o metal tenha somente a função de catalisador, alguns átomos podem se difundir no nanofio afetando suas propriedades. Assim, um dos objetivos deste trabalho foi sintetizar nanofios de germânio pelo método vapor-líquido-sólido com o uso de cinco diferentes catalisadores – ouro, prata, cobre, índio e níquel – e verificar a influência do catalisador em propriedades estruturais desses nanofios. Como resultados desta etapa, verificou-se que é possível sintetizar nanofios constituídos basicamente por germânio monocristalino em estrutura diamante, sem defeitos aparentes, com ordem de longo alcance e relação comprimento diâmetro da ordem de 103 para todos os metais de teste. Observou-se, ainda nesta etapa, que o metal catalisador exerceu influência: em configurações do processo de síntese, como temperatura de tratamento térmico e temperatura de síntese, e como consequência desta última, na camada de óxido de germânio ao redor dos nanofios; nos diâmetros e distribuição de diâmetros dos nanofios, com consequente efeito de confinamento de fônons nos nanofios de menor diametro crescidos com o níquel. Em relação às aplicações, o interesse atual pelo germânio se justifica por algumas de suas características, como a alta mobilidade de portadores (elétrons e buracos), os pequenos valores de gap de energia direto (0,8eV) e indireto (0,66eV) associados a um alto coeficiente de absorção de radiação eletromagnética em comprimentos de onda da luz visível e infravermelha, além de um grande raio excitônico de Bohr que destaca os efeitos de quantização. Desta forma, outro objetivo desta pesquisa foi investigar características elétricas e optoeletrônicas dos nanofios de germânio produzidos, através da construção de dispositivos de um único nanofio e de rede de nanofios. Os resultados desta parte do trabalho mostraram que: todos os dispositivos apresentaram o comportamento semicondutor esperado para o germânio monocristalino; o comportamento do contato metal-semicondutor – ôhmico ou Schottky – dependeu da temperatura de síntese dos nanofios e que, para os contatos Schottky, uma camada isolante na interface metal-nanofio, provavelmente de óxido de germânio, gerou uma dependência linear crescente da altura de barreira com a temperatura e contribuiu com a condução de corrente através de processos de tunelamento; tanto o mecanismo de ativação térmica quanto o hopping de alcance variável participaram do transporte de portadores nos dispositivos de rede de nanofios de germânio, já que pequenas diferenças no diâmetro ou na superfície dos nanofios podem alterar o mecanismo de transporte dominante, devido à grande razão superfície/ volume nessas nanoestruturas; que o fotocondutor e o fotodiodo construídos com a rede de nanofios de germânio apresentaram foto-resposta em uma larga faixa de potências de iluminação em comprimentos de onda da luz visível e infravermelha. Por fim, complementando o doutorado, as atividades de difusão da ciência realizadas no IFSP campus Sertãozinho prepararam esta instituição para a pesquisa científica na área de física, mostraram os primeiros resultados tanto na área de física quanto de ensino de física e motivaram a continuidade de estudos em estudantes de ensino médio e superior.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarGermânioNanofiosPropriedades estruturaisCaracterizações elétricasGermaniumNanowiresStructural propertiesElectrical characterizationCIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERALNanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006002c000bdd-a13f-4ae3-90e3-0cfe1cb12110info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseRCG.pdfTeseRCG.pdfapplication/pdf9443950https://repositorio.ufscar.br/bitstream/ufscar/8133/1/TeseRCG.pdfc796772c281fb76668fa0cfcaa9debe4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/8133/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseRCG.pdf.txtTeseRCG.pdf.txtExtracted texttext/plain287551https://repositorio.ufscar.br/bitstream/ufscar/8133/3/TeseRCG.pdf.txtdfedc2c25650c4c6f4b121997ea062baMD53THUMBNAILTeseRCG.pdf.jpgTeseRCG.pdf.jpgIM Thumbnailimage/jpeg5953https://repositorio.ufscar.br/bitstream/ufscar/8133/4/TeseRCG.pdf.jpgfd6e918e8a52c63942703aa99fd2354dMD54ufscar/81332023-09-18 18:31:03.031oai:repositorio.ufscar.br:ufscar/8133TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:03Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
title |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
spellingShingle |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações Gouveia, Riama Coelho Germânio Nanofios Propriedades estruturais Caracterizações elétricas Germanium Nanowires Structural properties Electrical characterization CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
title_short |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
title_full |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
title_fullStr |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
title_full_unstemmed |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
title_sort |
Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações |
author |
Gouveia, Riama Coelho |
author_facet |
Gouveia, Riama Coelho |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2500065916129657 |
dc.contributor.author.fl_str_mv |
Gouveia, Riama Coelho |
dc.contributor.advisor1.fl_str_mv |
Chiquito, Adenilson José |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7087360072774314 |
dc.contributor.authorID.fl_str_mv |
5fd921f6-6793-4137-9cfd-df70d7629db5 |
contributor_str_mv |
Chiquito, Adenilson José |
dc.subject.por.fl_str_mv |
Germânio Nanofios Propriedades estruturais Caracterizações elétricas |
topic |
Germânio Nanofios Propriedades estruturais Caracterizações elétricas Germanium Nanowires Structural properties Electrical characterization CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
dc.subject.eng.fl_str_mv |
Germanium Nanowires Structural properties Electrical characterization |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
description |
The element germanium is part of the history of electronic equipment based on semiconductor from its early days with the invention of the transistor, until today with current research related to growth of germanium nanowires and their application in devices such as transistors, sensors, solar cells, etc. Different experimental methods can be used for obtaining germanium nanowires. Among these, one of the most widely used and efficient is the vapor-liquid-solid mechanism, in which vapor phase germanium is adsorbed onto a liquid seed metal catalyst, usually gold, and then precipitated at the liquid-solid interface, resulting in the nanowire. Although the metal has only the catalyst function, some atoms may diffuse along the nanowires and affect their properties. Then, one of the aims of this work was to synthesize germanium nanowires by the vapor-liquid-solid method with the use of five different catalysts – gold, silver, copper, indium and nickel – and verify the influence of the metal on structural properties of the nanowires. As result of this stage it was found that is possible to obtain nanowires basically composed of single crystalline germanium with diamond structure, without apparent defects, having long-range order and with length/ diameter ratio of 103, using all the tested metals. Also in this stage it was observed that the metal catalyst had an influence on: the settings of synthesis process, such as the temperature of the heat treatment and the synthesis temperature, and consequently in the germanium oxide around the nanowires; the diameters and diameter distributions of the nanowires, that lead to phonon confinement effect in nanowires with small diameters grown using nickel. Regarding applications, the current interest in germanium is justified by some of its properties such as high carrier mobility (electrons and holes), small values of indirect (0,66eV) and direct (0,8eV) energy gaps associated with high absorption coefficient of electromagnetic radiation in visible an infrared wavelength, and a large excitonic Bohr radius which highlights quantization effects. Thus, another objective of this research was to investigate electrical and optoelectronic characteristics of the produced germanium nanowires, constructing single nanowire devices and nanowire networks devices. The results of this part showed that: all the devices presented the semiconductor behavior expected for single crystalline germanium; the metal-semiconductor contact behavior – ohmic or Schottky – depended on the synthesis temperature and for the Schottky contacts, an insulating layer on the metal-nanowire interface, probably composed by germanium oxide, caused an increasing linear dependence of the barrier height with temperature; both thermal activation mechanism as well as variable range hopping were observed in germanium nanowire network devices, since small differences in diameter or on the surface of the nanowires can change the dominant transport mechanism, due to the large surface/ volume ratio of these nanostructures; the photoconductor and the photodiode constructed with germanium nanowire network presented photo-response in a wide range of illumination power in visible and infrared light wavelengths. Finally, complementing this PhD program, the activities of science dissemination developed at the IFSP campus Sertãozinho prepared this institution for scientific research in physics and showed the first results both in physics as in the physics teaching; motivating high school and college students to continue their studies. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-10-21T13:11:56Z |
dc.date.available.fl_str_mv |
2016-10-21T13:11:56Z |
dc.date.issued.fl_str_mv |
2016-08-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GOUVEIA, Riama Coelho. Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações. 2016. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8133. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/8133 |
identifier_str_mv |
GOUVEIA, Riama Coelho. Nanofios de germânio : síntese, caracterização estrutural, propriedades elétricas e aplicações. 2016. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8133. |
url |
https://repositorio.ufscar.br/handle/ufscar/8133 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
2c000bdd-a13f-4ae3-90e3-0cfe1cb12110 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Física - PPGF |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/8133/1/TeseRCG.pdf https://repositorio.ufscar.br/bitstream/ufscar/8133/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/8133/3/TeseRCG.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/8133/4/TeseRCG.pdf.jpg |
bitstream.checksum.fl_str_mv |
c796772c281fb76668fa0cfcaa9debe4 ae0398b6f8b235e40ad82cba6c50031d dfedc2c25650c4c6f4b121997ea062ba fd6e918e8a52c63942703aa99fd2354d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715569509138432 |