Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos

Detalhes bibliográficos
Autor(a) principal: Oliveira, Alessandro Estarque de
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11352
Resumo: Mitigation of atmospheric pollutants emission and recovery of high-added value products are the main goals of studies on the optimization of devices that collect nanoparticles, which harmfulness is reported in the scientific literature. In the meantime, electrostatic precipitators collect above 99.9% of the particulate in a wide size range. However, studies on nanoparticles have evaluated velocities used in the industrial scale, while velocities less than 10 cm/s are barely explored. It is known that this range of velocities influences positively the diffusional mechanism in the filtration of nanoparticles. In order to evaluate this range of gas velocities, this work used a wire-plate electrostatic precipitator composed of two grounded copper plates with 30 cm of length, 10 cm of height, and 4.0 cm of spacing, and containing 8 stainless steel wires in its longitudinal axis, with diameter of 0.30 mm and 4.0 cm of spacing. Nano-aerosols of KCl, Fe2O3, NiO, and NaCl (this latter was only used in initial tests) were produced by the atomization of solutions and suspensions by nano-aerosols atomizers. Increase of particle concentration and decrease of gas velocity increased the efficiency in tests with two values of gas velocities (3.3 and 6.6 cm/s), each with two values of KCl solution concentrations (0.4 and 2.0 g/L), as well as in tests with 0.2, 0.4, and 2.0 g/L at 3.3 cm/s and tests with 1.0, 2.5, and 5.0 g/L at 8.2 cm/s, all under -8.0 kV. A methodology was purposed in which the aqueous concentration was varied proportionally with the gas velocity, using KCl aqueous concentrations of 4.0, 5.0, and 6.0 g/L respectively to 6.6, 8.2, and 9.9 cm/s, under -8.0 kV, in order to mitigate the dilution effect. Experimental results showed that it was possible to isolate the residence time effect on the efficiency. With this new methodology, tests were performed to evaluate velocities of 1.7, 3.3, 6.6, 9.9, 14.8, and 19.9 cm/s, using KCl solutions respectively of 0.5, 1.0, 2.0, 3.0, 4.5, and 6.0 g/L and electric fields of 3.95, 4.00, and 4.10 kV/cm. Electric field influenced positively the efficiency. Maximum points of efficiency were observed for 6.6 cm/s, which is not reported in the literature for nanoparticles and was associated with residence time, electro-fluid dynamics and diffusional effects of the particles. In tests with nanoparticles of NiO and Fe2O3 at 3.3 cm/s, it was verified the production of nanoparticles with narrower size distributions in the outlet of the device in relation to its inlet from -8.5 kV. This phenomenon was promoted by decreasing the velocity – evaluated in 1.61, 3.23, 4.83, 3.3, and 9.9 cm/s – and increasing the voltage – evaluated in -8.0, -8.5, -9.0, -10.0, -11.0, -13.0, and -15.0 kV – and was associated with the disaggregation of oxide agglomerates and the erosion of the wires. Finally, efficiency models coupled with Stokes Law and the Li and Wang model for the drag force were compared with experimental data. The efficiency model of Li-Chen-Tsai coupled with Li and Wang model better fitted the experimental data.
id SCAR_2e7499ad2765035454dc6a19091efef7
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11352
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Oliveira, Alessandro Estarque deBéttega, Vádila Giovana Guerrahttp://lattes.cnpq.br/0752059622240208http://lattes.cnpq.br/2654712372684137f3b2383a-c9ee-4820-b5f5-40e4c3f326342019-05-03T13:32:46Z2019-05-03T13:32:46Z2019-02-22OLIVEIRA, Alessandro Estarque de. Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos. 2019. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11352.https://repositorio.ufscar.br/handle/ufscar/11352Mitigation of atmospheric pollutants emission and recovery of high-added value products are the main goals of studies on the optimization of devices that collect nanoparticles, which harmfulness is reported in the scientific literature. In the meantime, electrostatic precipitators collect above 99.9% of the particulate in a wide size range. However, studies on nanoparticles have evaluated velocities used in the industrial scale, while velocities less than 10 cm/s are barely explored. It is known that this range of velocities influences positively the diffusional mechanism in the filtration of nanoparticles. In order to evaluate this range of gas velocities, this work used a wire-plate electrostatic precipitator composed of two grounded copper plates with 30 cm of length, 10 cm of height, and 4.0 cm of spacing, and containing 8 stainless steel wires in its longitudinal axis, with diameter of 0.30 mm and 4.0 cm of spacing. Nano-aerosols of KCl, Fe2O3, NiO, and NaCl (this latter was only used in initial tests) were produced by the atomization of solutions and suspensions by nano-aerosols atomizers. Increase of particle concentration and decrease of gas velocity increased the efficiency in tests with two values of gas velocities (3.3 and 6.6 cm/s), each with two values of KCl solution concentrations (0.4 and 2.0 g/L), as well as in tests with 0.2, 0.4, and 2.0 g/L at 3.3 cm/s and tests with 1.0, 2.5, and 5.0 g/L at 8.2 cm/s, all under -8.0 kV. A methodology was purposed in which the aqueous concentration was varied proportionally with the gas velocity, using KCl aqueous concentrations of 4.0, 5.0, and 6.0 g/L respectively to 6.6, 8.2, and 9.9 cm/s, under -8.0 kV, in order to mitigate the dilution effect. Experimental results showed that it was possible to isolate the residence time effect on the efficiency. With this new methodology, tests were performed to evaluate velocities of 1.7, 3.3, 6.6, 9.9, 14.8, and 19.9 cm/s, using KCl solutions respectively of 0.5, 1.0, 2.0, 3.0, 4.5, and 6.0 g/L and electric fields of 3.95, 4.00, and 4.10 kV/cm. Electric field influenced positively the efficiency. Maximum points of efficiency were observed for 6.6 cm/s, which is not reported in the literature for nanoparticles and was associated with residence time, electro-fluid dynamics and diffusional effects of the particles. In tests with nanoparticles of NiO and Fe2O3 at 3.3 cm/s, it was verified the production of nanoparticles with narrower size distributions in the outlet of the device in relation to its inlet from -8.5 kV. This phenomenon was promoted by decreasing the velocity – evaluated in 1.61, 3.23, 4.83, 3.3, and 9.9 cm/s – and increasing the voltage – evaluated in -8.0, -8.5, -9.0, -10.0, -11.0, -13.0, and -15.0 kV – and was associated with the disaggregation of oxide agglomerates and the erosion of the wires. Finally, efficiency models coupled with Stokes Law and the Li and Wang model for the drag force were compared with experimental data. The efficiency model of Li-Chen-Tsai coupled with Li and Wang model better fitted the experimental data.A mitigação da emissão de poluentes atmosféricos e a recuperação de produtos de alto valor agregado são os principais fins de estudos de otimização de equipamentos coletores de nanopartículas, cuja periculosidade é reportada na literatura científica. Neste ínterim, precipitadores eletrostáticos coletam mais de 99,9% do particulado de uma ampla faixa granulométrica. No entanto, estudos com nanopartículas têm avaliado velocidades utilizadas industrialmente, enquanto velocidades abaixo de 10 cm/s são escassamente exploradas. Sabe-se que esta faixa influencia positivamente o mecanismo difusional no processo de filtração de partículas nanométricas. Com o objetivo de avaliar esta faixa de velocidades, o presente trabalho utilizou um precipitador placa-fio contendo duas placas de cobre aterradas, de 30 cm de comprimento, 10 cm de altura e espaçadas em 4,0 cm, e 8 fios de aço inox dispostos em seu eixo longitudinal, de diâmetro igual a 0,30 mm e espaçamento de 4,0 cm. Nano-aerossóis de KCl, Fe2O3, NiO e NaCl (este último utilizado apenas em testes iniciais) foram gerados a partir da atomização de soluções e suspensões por dispersores de nano-aerossóis. Em testes com KCl sob duas velocidades do gás (3,3 e 6,6 cm/s), cada qual com duas concentrações de solução (0,4 e 2,0 g/L), bem como em testes com 0,2; 0,4; 2,0 g/L sob 3,3 cm/s e testes com 1,0; 2,5; 5,0 g/L sob 8,2 cm/s, todos sob voltagem de -8,0 kV, verificou-se que o aumento da concentração de particulado favoreceu a eficiência, bem como a diminuição da velocidade. Propôs-se uma metodologia na qual a concentração aquosa variava proporcionalmente à variação da velocidade, utilizando-se 4,0; 5,0; 6,0 g/L respectivamente para 6,6; 8,2; 9,9 cm/s, sob voltagem de -8,0 kV, de forma a mitigar efeitos de diluição. Os resultados indicaram que foi possível isolar o efeito do tempo de residência sobre a eficiência. Com esta nova metodologia, foram realizados testes avaliando-se velocidades de 1,7; 3,3; 6,6; 9,9; 14,8; 19,9 cm/s, utilizando-se concentrações de KCl de 0,5; 1,0; 2,0; 3,0; 4,5; 6,0 g/L, respectivamente, e campos elétricos de 3,95; 4,00; 4,10 kV/cm. O campo elétrico influenciou positivamente a eficiência. Constatou-se pontos de máximo de eficiência para a velocidade 6,6 cm/s, algo não relatado na literatura para nanopartículas e que foi associado a efeitos de tempo de residência, da eletro-fluidodinâmica do sistema e de efeitos difusionais das partículas. Em testes de precipitação de nanopartículas de NiO e Fe2O3 a 3,3 cm/s, verificou-se formação de nanopartículas de granulometrias na saída do precipitador mais finas que na entrada a partir de -8,5 kV. Tal fenômeno foi favorecido com a redução da velocidade – avaliada em 1,61; 3,23; 4,83; 3,3; 9,9 cm/s – e com o aumento da voltagem – avaliada em -8,0; -8,5; -9,0; -10,0; -11,0; -13,0; -15,0 kV – e foi associado com a desagregação de aglomerados de óxidos e com a erosão dos fios. Finalmente, foram avaliados modelos de eficiência acoplados à Lei de Stokes e ao modelo de Li e Wang para a força de arraste. O modelo de eficiência de Li-Chen-Tsai associado ao modelo de Li e Wang melhor representou os dados experimentais.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 131744/2017-8porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarPrecipitação eletrostáticaNanopartículasControle ambientalPoluição atmosféricaOperações unitáriasElectrostatic precipitationNanoparticlesEnvironmental controlAtmospheric pollutionUnit operationsENGENHARIAS::ENGENHARIA QUIMICAPrecipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenosElectrostatic precipitation of nanoparticles: methodology development and investigation of phenomenainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnlineb09cec26-df91-4551-8420-8b8b02ccc6a6info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Alessandro.pdfDissertação Alessandro.pdfDissertação completaapplication/pdf9394987https://repositorio.ufscar.br/bitstream/ufscar/11352/1/Disserta%c3%a7%c3%a3o%20Alessandro.pdf15fab86cf25f4f236f2ba172abad85dcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11352/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54TEXTDissertação Alessandro.pdf.txtDissertação Alessandro.pdf.txtExtracted texttext/plain303204https://repositorio.ufscar.br/bitstream/ufscar/11352/5/Disserta%c3%a7%c3%a3o%20Alessandro.pdf.txt3e07100de277bfde1f65b08d43c1e316MD55THUMBNAILDissertação Alessandro.pdf.jpgDissertação Alessandro.pdf.jpgIM Thumbnailimage/jpeg7901https://repositorio.ufscar.br/bitstream/ufscar/11352/6/Disserta%c3%a7%c3%a3o%20Alessandro.pdf.jpgfdaf0d34aa45e609da0d9c51c41aab2cMD56ufscar/113522023-09-18 18:31:22.348oai:repositorio.ufscar.br:ufscar/11352TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:22Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
dc.title.alternative.eng.fl_str_mv Electrostatic precipitation of nanoparticles: methodology development and investigation of phenomena
title Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
spellingShingle Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
Oliveira, Alessandro Estarque de
Precipitação eletrostática
Nanopartículas
Controle ambiental
Poluição atmosférica
Operações unitárias
Electrostatic precipitation
Nanoparticles
Environmental control
Atmospheric pollution
Unit operations
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
title_full Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
title_fullStr Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
title_full_unstemmed Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
title_sort Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos
author Oliveira, Alessandro Estarque de
author_facet Oliveira, Alessandro Estarque de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2654712372684137
dc.contributor.author.fl_str_mv Oliveira, Alessandro Estarque de
dc.contributor.advisor1.fl_str_mv Béttega, Vádila Giovana Guerra
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0752059622240208
dc.contributor.authorID.fl_str_mv f3b2383a-c9ee-4820-b5f5-40e4c3f32634
contributor_str_mv Béttega, Vádila Giovana Guerra
dc.subject.por.fl_str_mv Precipitação eletrostática
Nanopartículas
Controle ambiental
Poluição atmosférica
Operações unitárias
topic Precipitação eletrostática
Nanopartículas
Controle ambiental
Poluição atmosférica
Operações unitárias
Electrostatic precipitation
Nanoparticles
Environmental control
Atmospheric pollution
Unit operations
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Electrostatic precipitation
Nanoparticles
Environmental control
Atmospheric pollution
Unit operations
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Mitigation of atmospheric pollutants emission and recovery of high-added value products are the main goals of studies on the optimization of devices that collect nanoparticles, which harmfulness is reported in the scientific literature. In the meantime, electrostatic precipitators collect above 99.9% of the particulate in a wide size range. However, studies on nanoparticles have evaluated velocities used in the industrial scale, while velocities less than 10 cm/s are barely explored. It is known that this range of velocities influences positively the diffusional mechanism in the filtration of nanoparticles. In order to evaluate this range of gas velocities, this work used a wire-plate electrostatic precipitator composed of two grounded copper plates with 30 cm of length, 10 cm of height, and 4.0 cm of spacing, and containing 8 stainless steel wires in its longitudinal axis, with diameter of 0.30 mm and 4.0 cm of spacing. Nano-aerosols of KCl, Fe2O3, NiO, and NaCl (this latter was only used in initial tests) were produced by the atomization of solutions and suspensions by nano-aerosols atomizers. Increase of particle concentration and decrease of gas velocity increased the efficiency in tests with two values of gas velocities (3.3 and 6.6 cm/s), each with two values of KCl solution concentrations (0.4 and 2.0 g/L), as well as in tests with 0.2, 0.4, and 2.0 g/L at 3.3 cm/s and tests with 1.0, 2.5, and 5.0 g/L at 8.2 cm/s, all under -8.0 kV. A methodology was purposed in which the aqueous concentration was varied proportionally with the gas velocity, using KCl aqueous concentrations of 4.0, 5.0, and 6.0 g/L respectively to 6.6, 8.2, and 9.9 cm/s, under -8.0 kV, in order to mitigate the dilution effect. Experimental results showed that it was possible to isolate the residence time effect on the efficiency. With this new methodology, tests were performed to evaluate velocities of 1.7, 3.3, 6.6, 9.9, 14.8, and 19.9 cm/s, using KCl solutions respectively of 0.5, 1.0, 2.0, 3.0, 4.5, and 6.0 g/L and electric fields of 3.95, 4.00, and 4.10 kV/cm. Electric field influenced positively the efficiency. Maximum points of efficiency were observed for 6.6 cm/s, which is not reported in the literature for nanoparticles and was associated with residence time, electro-fluid dynamics and diffusional effects of the particles. In tests with nanoparticles of NiO and Fe2O3 at 3.3 cm/s, it was verified the production of nanoparticles with narrower size distributions in the outlet of the device in relation to its inlet from -8.5 kV. This phenomenon was promoted by decreasing the velocity – evaluated in 1.61, 3.23, 4.83, 3.3, and 9.9 cm/s – and increasing the voltage – evaluated in -8.0, -8.5, -9.0, -10.0, -11.0, -13.0, and -15.0 kV – and was associated with the disaggregation of oxide agglomerates and the erosion of the wires. Finally, efficiency models coupled with Stokes Law and the Li and Wang model for the drag force were compared with experimental data. The efficiency model of Li-Chen-Tsai coupled with Li and Wang model better fitted the experimental data.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-03T13:32:46Z
dc.date.available.fl_str_mv 2019-05-03T13:32:46Z
dc.date.issued.fl_str_mv 2019-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Alessandro Estarque de. Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos. 2019. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11352.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11352
identifier_str_mv OLIVEIRA, Alessandro Estarque de. Precipitação eletrostática de nanopartículas: desenvolvimento de metodologias e investigações de fenômenos. 2019. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11352.
url https://repositorio.ufscar.br/handle/ufscar/11352
dc.language.iso.fl_str_mv por
language por
dc.relation.authority.fl_str_mv b09cec26-df91-4551-8420-8b8b02ccc6a6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11352/1/Disserta%c3%a7%c3%a3o%20Alessandro.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11352/4/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11352/5/Disserta%c3%a7%c3%a3o%20Alessandro.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11352/6/Disserta%c3%a7%c3%a3o%20Alessandro.pdf.jpg
bitstream.checksum.fl_str_mv 15fab86cf25f4f236f2ba172abad85dc
ae0398b6f8b235e40ad82cba6c50031d
3e07100de277bfde1f65b08d43c1e316
fdaf0d34aa45e609da0d9c51c41aab2c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136357230870528