Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/10195 |
Resumo: | Due to the coherent processing of synthetic aperture radar (SAR) systems, multiplicative speckle noise arises providing a granular appearance in SAR images. This kind of noise makes it difficult to analyse and interpret Earth surface images. Therefore, the search for new techniques to mitigate the speckle is a constant task in the image processing literature. Current state-of-the-art filters in remote sensing area explore the philosophy of similarity between patches (neighborhoods). This thesis aims to expand a recently proposed filtering algorithm:the Non-Local Means (NLM), which represents a new paradigm for filtering images, and analyses and compares its capacity of speckle reduction in intensity SAR images, technique known in the literature as despeckling. This filter was originally proposed for the additive white Gaussian noise (AWGN). The NLM filter extension considers a scenario with the more aggressive noise, i.e., the single-look speckle, and it is possible to attenuate the noise by replacing the original distance used to measure the similarity between patches, the Euclidean distance, with the stochastic distances and apply the proposed filter in the Haar wavelets domain. To achieve this goal, the Haar wavelet coefficients were described by the Exponential-Polynomial (EP) and Gamma distributions. The main contribution of this proposal is to work with the NLM, originally developed for the image space domain, directly in the wavelets domain, by computing the stochastic distances based on the EP and Gamma distributions. In addition, this proposal shows that it is advantageous to use elaborate methods for post-filtering processing, such as Dual Domain Filtering (DDF) and Data Adaptive Dual Domain Denoising (DA3D), as they can improve the quality of the filtered image both of the proposed method and the state-of-the-art algorithm. Finally, an analysis and comparison of the results of the proposed method are made, which show that this new approach was able to attenuate the presence of speckle in the more aggressive case, with some of the recent filters in the literature. The obtained results show that the proposed filter is competitive. |
id |
SCAR_40379278a7092bab6fdb23ac802c45b9 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/10195 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Penna, Pedro Augusto de AlagãoMascarenhas, Nelson Delfino d'Ávilahttp://lattes.cnpq.br/0557976975338451http://lattes.cnpq.br/336618866845905822c2e3d0-e726-408d-8a57-6f56e170eed12018-06-21T13:04:39Z2018-06-21T13:04:39Z2018-06-04PENNA, Pedro Augusto de Alagão. Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10195.https://repositorio.ufscar.br/handle/ufscar/10195Due to the coherent processing of synthetic aperture radar (SAR) systems, multiplicative speckle noise arises providing a granular appearance in SAR images. This kind of noise makes it difficult to analyse and interpret Earth surface images. Therefore, the search for new techniques to mitigate the speckle is a constant task in the image processing literature. Current state-of-the-art filters in remote sensing area explore the philosophy of similarity between patches (neighborhoods). This thesis aims to expand a recently proposed filtering algorithm:the Non-Local Means (NLM), which represents a new paradigm for filtering images, and analyses and compares its capacity of speckle reduction in intensity SAR images, technique known in the literature as despeckling. This filter was originally proposed for the additive white Gaussian noise (AWGN). The NLM filter extension considers a scenario with the more aggressive noise, i.e., the single-look speckle, and it is possible to attenuate the noise by replacing the original distance used to measure the similarity between patches, the Euclidean distance, with the stochastic distances and apply the proposed filter in the Haar wavelets domain. To achieve this goal, the Haar wavelet coefficients were described by the Exponential-Polynomial (EP) and Gamma distributions. The main contribution of this proposal is to work with the NLM, originally developed for the image space domain, directly in the wavelets domain, by computing the stochastic distances based on the EP and Gamma distributions. In addition, this proposal shows that it is advantageous to use elaborate methods for post-filtering processing, such as Dual Domain Filtering (DDF) and Data Adaptive Dual Domain Denoising (DA3D), as they can improve the quality of the filtered image both of the proposed method and the state-of-the-art algorithm. Finally, an analysis and comparison of the results of the proposed method are made, which show that this new approach was able to attenuate the presence of speckle in the more aggressive case, with some of the recent filters in the literature. The obtained results show that the proposed filter is competitive.Devido ao processamento coerente dos sistemas de radar de abertura sintetica (SAR - “Synthetic Aperture Radar”), o ruído multiplicativo “speckle” surge fornecendo uma aparência granulosa às imagens SAR. Este tipo de ruído dificulta a análise e interpretação das imagens da superfície terrestre. Portanto, a pesquisa por novas técnicas de filtragem do “speckle” é uma tarefa constante na literatura de Processamento de Imagens e Sinais. Os atuais filtros do estado da arte na área de sensoriamento remoto exploram a filosofia da similaridade entre “patches” (janelas ou vizinhanças). O método apresentado nesta tese tem o propósito de melhorar um algoritmo de filtragem recentemente proposto: o “Non- Local Means” (NLM), o qual representou um novo paradigma para filtragem de imagens, e analisar e comparar sua capacidade de redução do “speckle” em imagens SAR de intensidade, técnica conhecida na literatura como “despeckling”. O filtro NLM foi originalmente desenvolvido para o ruído branco aditivo gaussiano (AWGN - “Additive White GaussianNoise”). O método proposto, que ´é uma extensão do filtro NLM, considera um cenário com o ruído mais forte, isto é, o “single look peckle”, e é possível atenuar o ruído substituindo a distância original utilizada para medir a similaridade entre “patches” (vizinhanças), a distância Euclidiana, pelas distâncias estocásticas e aplicar o filtro proposto no domínio da “wavelet”de Haar. Para alcançar este objetivo, os coeficientes da “wavelet” de Haar foram descritos pelas distribuições EP (“Exponential-Polynomial”) e Gama. A principal contribuição desta proposta é trabalhar com o NLM, originalmente desenvolvido para o domínio espacial da imagem, diretamente no domínio das “wavelets”, ao computar as distâncias estocásticas baseando-se nas distribuições EP e Gama. Além disto, este trabalho mostra que é vantajoso utilizar métodos elaborados para o processamento pós- filtragem, como o “Dual Domain Filtering”(DDF) e “Data Adaptive Dual Domain Denoising”(DA3D), pois eles podem melhorar a qualidade da imagem filtrada tanto do método proposto quanto do algoritmo do estado da arte. Por fim, é feita uma análise e comparação dos resultados do filtro proposto mostrando que essa nova abordagem foi capaz de atenuar o “speckle” para o caso mais agressivo, com alguns dos filtros recentes da literatura. Os resultados obtidos mostram que a abordagem proposta é competitiva.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarDistâncias estocásticasDistribuição EPFiltragemSARNLMSpeckleDespecklingWaveletsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOFiltragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600787a11d3-939f-471e-8064-0e22da9d895finfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALtese.pdftese.pdfTese completaapplication/pdf29950837https://repositorio.ufscar.br/bitstream/ufscar/10195/1/tese.pdf8e68973b892cf68ffe6408d4c82d0670MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/10195/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTtese.pdf.txttese.pdf.txtExtracted texttext/plain157626https://repositorio.ufscar.br/bitstream/ufscar/10195/4/tese.pdf.txt8526d36430ea9e7556d5d87f184c6ae9MD54THUMBNAILtese.pdf.jpgtese.pdf.jpgIM Thumbnailimage/jpeg9989https://repositorio.ufscar.br/bitstream/ufscar/10195/5/tese.pdf.jpg33729a377118bad6e3386a4c7fd945e5MD55ufscar/101952023-09-18 18:31:15.493oai:repositorio.ufscar.br:ufscar/10195TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:15Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
title |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
spellingShingle |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas Penna, Pedro Augusto de Alagão Distâncias estocásticas Distribuição EP Filtragem SAR NLM Speckle Despeckling Wavelets CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
title_short |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
title_full |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
title_fullStr |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
title_full_unstemmed |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
title_sort |
Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas |
author |
Penna, Pedro Augusto de Alagão |
author_facet |
Penna, Pedro Augusto de Alagão |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3366188668459058 |
dc.contributor.author.fl_str_mv |
Penna, Pedro Augusto de Alagão |
dc.contributor.advisor1.fl_str_mv |
Mascarenhas, Nelson Delfino d'Ávila |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0557976975338451 |
dc.contributor.authorID.fl_str_mv |
22c2e3d0-e726-408d-8a57-6f56e170eed1 |
contributor_str_mv |
Mascarenhas, Nelson Delfino d'Ávila |
dc.subject.por.fl_str_mv |
Distâncias estocásticas Distribuição EP Filtragem SAR NLM |
topic |
Distâncias estocásticas Distribuição EP Filtragem SAR NLM Speckle Despeckling Wavelets CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Speckle Despeckling Wavelets |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
description |
Due to the coherent processing of synthetic aperture radar (SAR) systems, multiplicative speckle noise arises providing a granular appearance in SAR images. This kind of noise makes it difficult to analyse and interpret Earth surface images. Therefore, the search for new techniques to mitigate the speckle is a constant task in the image processing literature. Current state-of-the-art filters in remote sensing area explore the philosophy of similarity between patches (neighborhoods). This thesis aims to expand a recently proposed filtering algorithm:the Non-Local Means (NLM), which represents a new paradigm for filtering images, and analyses and compares its capacity of speckle reduction in intensity SAR images, technique known in the literature as despeckling. This filter was originally proposed for the additive white Gaussian noise (AWGN). The NLM filter extension considers a scenario with the more aggressive noise, i.e., the single-look speckle, and it is possible to attenuate the noise by replacing the original distance used to measure the similarity between patches, the Euclidean distance, with the stochastic distances and apply the proposed filter in the Haar wavelets domain. To achieve this goal, the Haar wavelet coefficients were described by the Exponential-Polynomial (EP) and Gamma distributions. The main contribution of this proposal is to work with the NLM, originally developed for the image space domain, directly in the wavelets domain, by computing the stochastic distances based on the EP and Gamma distributions. In addition, this proposal shows that it is advantageous to use elaborate methods for post-filtering processing, such as Dual Domain Filtering (DDF) and Data Adaptive Dual Domain Denoising (DA3D), as they can improve the quality of the filtered image both of the proposed method and the state-of-the-art algorithm. Finally, an analysis and comparison of the results of the proposed method are made, which show that this new approach was able to attenuate the presence of speckle in the more aggressive case, with some of the recent filters in the literature. The obtained results show that the proposed filter is competitive. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-06-21T13:04:39Z |
dc.date.available.fl_str_mv |
2018-06-21T13:04:39Z |
dc.date.issued.fl_str_mv |
2018-06-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PENNA, Pedro Augusto de Alagão. Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10195. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/10195 |
identifier_str_mv |
PENNA, Pedro Augusto de Alagão. Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10195. |
url |
https://repositorio.ufscar.br/handle/ufscar/10195 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
787a11d3-939f-471e-8064-0e22da9d895f |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/10195/1/tese.pdf https://repositorio.ufscar.br/bitstream/ufscar/10195/3/license.txt https://repositorio.ufscar.br/bitstream/ufscar/10195/4/tese.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/10195/5/tese.pdf.jpg |
bitstream.checksum.fl_str_mv |
8e68973b892cf68ffe6408d4c82d0670 ae0398b6f8b235e40ad82cba6c50031d 8526d36430ea9e7556d5d87f184c6ae9 33729a377118bad6e3386a4c7fd945e5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715591963344896 |