Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas

Detalhes bibliográficos
Autor(a) principal: Penna, Pedro Augusto de Alagão
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/10195
Resumo: Due to the coherent processing of synthetic aperture radar (SAR) systems, multiplicative speckle noise arises providing a granular appearance in SAR images. This kind of noise makes it difficult to analyse and interpret Earth surface images. Therefore, the search for new techniques to mitigate the speckle is a constant task in the image processing literature. Current state-of-the-art filters in remote sensing area explore the philosophy of similarity between patches (neighborhoods). This thesis aims to expand a recently proposed filtering algorithm:the Non-Local Means (NLM), which represents a new paradigm for filtering images, and analyses and compares its capacity of speckle reduction in intensity SAR images, technique known in the literature as despeckling. This filter was originally proposed for the additive white Gaussian noise (AWGN). The NLM filter extension considers a scenario with the more aggressive noise, i.e., the single-look speckle, and it is possible to attenuate the noise by replacing the original distance used to measure the similarity between patches, the Euclidean distance, with the stochastic distances and apply the proposed filter in the Haar wavelets domain. To achieve this goal, the Haar wavelet coefficients were described by the Exponential-Polynomial (EP) and Gamma distributions. The main contribution of this proposal is to work with the NLM, originally developed for the image space domain, directly in the wavelets domain, by computing the stochastic distances based on the EP and Gamma distributions. In addition, this proposal shows that it is advantageous to use elaborate methods for post-filtering processing, such as Dual Domain Filtering (DDF) and Data Adaptive Dual Domain Denoising (DA3D), as they can improve the quality of the filtered image both of the proposed method and the state-of-the-art algorithm. Finally, an analysis and comparison of the results of the proposed method are made, which show that this new approach was able to attenuate the presence of speckle in the more aggressive case, with some of the recent filters in the literature. The obtained results show that the proposed filter is competitive.
id SCAR_40379278a7092bab6fdb23ac802c45b9
oai_identifier_str oai:repositorio.ufscar.br:ufscar/10195
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Penna, Pedro Augusto de AlagãoMascarenhas, Nelson Delfino d'Ávilahttp://lattes.cnpq.br/0557976975338451http://lattes.cnpq.br/336618866845905822c2e3d0-e726-408d-8a57-6f56e170eed12018-06-21T13:04:39Z2018-06-21T13:04:39Z2018-06-04PENNA, Pedro Augusto de Alagão. Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10195.https://repositorio.ufscar.br/handle/ufscar/10195Due to the coherent processing of synthetic aperture radar (SAR) systems, multiplicative speckle noise arises providing a granular appearance in SAR images. This kind of noise makes it difficult to analyse and interpret Earth surface images. Therefore, the search for new techniques to mitigate the speckle is a constant task in the image processing literature. Current state-of-the-art filters in remote sensing area explore the philosophy of similarity between patches (neighborhoods). This thesis aims to expand a recently proposed filtering algorithm:the Non-Local Means (NLM), which represents a new paradigm for filtering images, and analyses and compares its capacity of speckle reduction in intensity SAR images, technique known in the literature as despeckling. This filter was originally proposed for the additive white Gaussian noise (AWGN). The NLM filter extension considers a scenario with the more aggressive noise, i.e., the single-look speckle, and it is possible to attenuate the noise by replacing the original distance used to measure the similarity between patches, the Euclidean distance, with the stochastic distances and apply the proposed filter in the Haar wavelets domain. To achieve this goal, the Haar wavelet coefficients were described by the Exponential-Polynomial (EP) and Gamma distributions. The main contribution of this proposal is to work with the NLM, originally developed for the image space domain, directly in the wavelets domain, by computing the stochastic distances based on the EP and Gamma distributions. In addition, this proposal shows that it is advantageous to use elaborate methods for post-filtering processing, such as Dual Domain Filtering (DDF) and Data Adaptive Dual Domain Denoising (DA3D), as they can improve the quality of the filtered image both of the proposed method and the state-of-the-art algorithm. Finally, an analysis and comparison of the results of the proposed method are made, which show that this new approach was able to attenuate the presence of speckle in the more aggressive case, with some of the recent filters in the literature. The obtained results show that the proposed filter is competitive.Devido ao processamento coerente dos sistemas de radar de abertura sintetica (SAR - “Synthetic Aperture Radar”), o ruído multiplicativo “speckle” surge fornecendo uma aparência granulosa às imagens SAR. Este tipo de ruído dificulta a análise e interpretação das imagens da superfície terrestre. Portanto, a pesquisa por novas técnicas de filtragem do “speckle” é uma tarefa constante na literatura de Processamento de Imagens e Sinais. Os atuais filtros do estado da arte na área de sensoriamento remoto exploram a filosofia da similaridade entre “patches” (janelas ou vizinhanças). O método apresentado nesta tese tem o propósito de melhorar um algoritmo de filtragem recentemente proposto: o “Non- Local Means” (NLM), o qual representou um novo paradigma para filtragem de imagens, e analisar e comparar sua capacidade de redução do “speckle” em imagens SAR de intensidade, técnica conhecida na literatura como “despeckling”. O filtro NLM foi originalmente desenvolvido para o ruído branco aditivo gaussiano (AWGN - “Additive White GaussianNoise”). O método proposto, que ´é uma extensão do filtro NLM, considera um cenário com o ruído mais forte, isto é, o “single look peckle”, e é possível atenuar o ruído substituindo a distância original utilizada para medir a similaridade entre “patches” (vizinhanças), a distância Euclidiana, pelas distâncias estocásticas e aplicar o filtro proposto no domínio da “wavelet”de Haar. Para alcançar este objetivo, os coeficientes da “wavelet” de Haar foram descritos pelas distribuições EP (“Exponential-Polynomial”) e Gama. A principal contribuição desta proposta é trabalhar com o NLM, originalmente desenvolvido para o domínio espacial da imagem, diretamente no domínio das “wavelets”, ao computar as distâncias estocásticas baseando-se nas distribuições EP e Gama. Além disto, este trabalho mostra que é vantajoso utilizar métodos elaborados para o processamento pós- filtragem, como o “Dual Domain Filtering”(DDF) e “Data Adaptive Dual Domain Denoising”(DA3D), pois eles podem melhorar a qualidade da imagem filtrada tanto do método proposto quanto do algoritmo do estado da arte. Por fim, é feita uma análise e comparação dos resultados do filtro proposto mostrando que essa nova abordagem foi capaz de atenuar o “speckle” para o caso mais agressivo, com alguns dos filtros recentes da literatura. Os resultados obtidos mostram que a abordagem proposta é competitiva.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarDistâncias estocásticasDistribuição EPFiltragemSARNLMSpeckleDespecklingWaveletsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOFiltragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600787a11d3-939f-471e-8064-0e22da9d895finfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALtese.pdftese.pdfTese completaapplication/pdf29950837https://repositorio.ufscar.br/bitstream/ufscar/10195/1/tese.pdf8e68973b892cf68ffe6408d4c82d0670MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/10195/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTtese.pdf.txttese.pdf.txtExtracted texttext/plain157626https://repositorio.ufscar.br/bitstream/ufscar/10195/4/tese.pdf.txt8526d36430ea9e7556d5d87f184c6ae9MD54THUMBNAILtese.pdf.jpgtese.pdf.jpgIM Thumbnailimage/jpeg9989https://repositorio.ufscar.br/bitstream/ufscar/10195/5/tese.pdf.jpg33729a377118bad6e3386a4c7fd945e5MD55ufscar/101952023-09-18 18:31:15.493oai:repositorio.ufscar.br:ufscar/10195TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:15Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
title Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
spellingShingle Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
Penna, Pedro Augusto de Alagão
Distâncias estocásticas
Distribuição EP
Filtragem
SAR
NLM
Speckle
Despeckling
Wavelets
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
title_full Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
title_fullStr Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
title_full_unstemmed Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
title_sort Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas
author Penna, Pedro Augusto de Alagão
author_facet Penna, Pedro Augusto de Alagão
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3366188668459058
dc.contributor.author.fl_str_mv Penna, Pedro Augusto de Alagão
dc.contributor.advisor1.fl_str_mv Mascarenhas, Nelson Delfino d'Ávila
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0557976975338451
dc.contributor.authorID.fl_str_mv 22c2e3d0-e726-408d-8a57-6f56e170eed1
contributor_str_mv Mascarenhas, Nelson Delfino d'Ávila
dc.subject.por.fl_str_mv Distâncias estocásticas
Distribuição EP
Filtragem
SAR
NLM
topic Distâncias estocásticas
Distribuição EP
Filtragem
SAR
NLM
Speckle
Despeckling
Wavelets
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.eng.fl_str_mv Speckle
Despeckling
Wavelets
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description Due to the coherent processing of synthetic aperture radar (SAR) systems, multiplicative speckle noise arises providing a granular appearance in SAR images. This kind of noise makes it difficult to analyse and interpret Earth surface images. Therefore, the search for new techniques to mitigate the speckle is a constant task in the image processing literature. Current state-of-the-art filters in remote sensing area explore the philosophy of similarity between patches (neighborhoods). This thesis aims to expand a recently proposed filtering algorithm:the Non-Local Means (NLM), which represents a new paradigm for filtering images, and analyses and compares its capacity of speckle reduction in intensity SAR images, technique known in the literature as despeckling. This filter was originally proposed for the additive white Gaussian noise (AWGN). The NLM filter extension considers a scenario with the more aggressive noise, i.e., the single-look speckle, and it is possible to attenuate the noise by replacing the original distance used to measure the similarity between patches, the Euclidean distance, with the stochastic distances and apply the proposed filter in the Haar wavelets domain. To achieve this goal, the Haar wavelet coefficients were described by the Exponential-Polynomial (EP) and Gamma distributions. The main contribution of this proposal is to work with the NLM, originally developed for the image space domain, directly in the wavelets domain, by computing the stochastic distances based on the EP and Gamma distributions. In addition, this proposal shows that it is advantageous to use elaborate methods for post-filtering processing, such as Dual Domain Filtering (DDF) and Data Adaptive Dual Domain Denoising (DA3D), as they can improve the quality of the filtered image both of the proposed method and the state-of-the-art algorithm. Finally, an analysis and comparison of the results of the proposed method are made, which show that this new approach was able to attenuate the presence of speckle in the more aggressive case, with some of the recent filters in the literature. The obtained results show that the proposed filter is competitive.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-06-21T13:04:39Z
dc.date.available.fl_str_mv 2018-06-21T13:04:39Z
dc.date.issued.fl_str_mv 2018-06-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PENNA, Pedro Augusto de Alagão. Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10195.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/10195
identifier_str_mv PENNA, Pedro Augusto de Alagão. Filtragem não-local do ruído Speckle em imagens SAR com modelagem estatística dos coeficientes da Wavelet de Haar e distâncias estocásticas. 2018. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10195.
url https://repositorio.ufscar.br/handle/ufscar/10195
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 787a11d3-939f-471e-8064-0e22da9d895f
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/10195/1/tese.pdf
https://repositorio.ufscar.br/bitstream/ufscar/10195/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/10195/4/tese.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/10195/5/tese.pdf.jpg
bitstream.checksum.fl_str_mv 8e68973b892cf68ffe6408d4c82d0670
ae0398b6f8b235e40ad82cba6c50031d
8526d36430ea9e7556d5d87f184c6ae9
33729a377118bad6e3386a4c7fd945e5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715591963344896