Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.

Detalhes bibliográficos
Autor(a) principal: Vieira, Marcelo Fernandes
Data de Publicação: 2003
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/3898
Resumo: The separation/concentration process of the products obtained from the enzymatic synthesis of ampicillin (AMP) catalyzed by immobilized penicillin G acylase was the focus of this Thesis. Hydrophobic resin adsorption and isoelectric precipitation were the processes herein evaluated. The antibiotic was produced in the solid phase, from 6-aminopenicillanic acid (6-APA) and phenylglycine methyl ester (PGME), and phenylglice (PG) was an undesired product. The immobilized enzyme was retained in the reactor by a sieve and the precipitated products formed (AMP and PG) were withdrawn and further dissolved at alkaline pH. After a filtration step, PG crystals were retrieved. In a second step, AMP crystals could be obtained by isoelectric precipitation. A combined process for separation/concentration of AMP, using isoelectric precipitation and hydrophobic adsorption, was put forth. The isolectric points of the molecules involved in the enzymatic synthesis were determined. In addition, the pH influence (range 5.5-7.5) on the solubility of the compounds was assessed. The results, in accordance with the literature, have shown that a pH increase leaded to an increase of the solubility of AMP and 6-APA. On the other hand, PGME solubility decreased with pH, while PG solubility was practically constant in this pH range. The adsorption efficiency and selectivity of three hydrophobic commercial resins XAD-4, XAD-7 and XAD-761 (Rohm and Haas) were evaluated at different pHs for the separation of dissolved products and unconverted reactants. Batch experiments were carried out to determine which resin had higher AMP adsorption capacity and higher selectivity (AMP/PG), at different pHs. XAD-4 was chosen: it presented higher selectivity (maximum AMP/PG = 7,0 at pH 8.5) and adsorption capacity (maximum 455 mg of AMP/g of resin, at pH 6.5). Equilibrium adsorption models were fitted: linear and Langmuir models represented PG and AMP adsorption on XAD-4 resin at pH 6.5, respectively. In a parallel work, our research group has decided to integrate synthesis and separation (precipitation of the products) in the enzymatic reactor: AMP and PG were in solid phase, and the immobilized enzyme was separated by sieving. Consequently, a combined process using isolectric precipitation and hydrophobic adsorption to separate/concentrate the AMP coming from enzymatic synthesis, with PG as impurity, was proposed. Based on the physical-chemical properties of the components, the separation process started by the elevation of pH, aiming at dissolving all AMP crystals, together with a minimum of PG crystals. Better results were obtained using pH 8.5. After filtration, un-dissolved PG was obtained. In a second step, the pH it was brought to the AMP isolectric point, causing its precipitation. Two acids and two temperatures were evaluated in this step: chloridric and sulfuric acid, 4 and 250C. Better results were obtained at 40C. No significant difference observed between the two acids. AMP crystals had purity above 97% at 40C. The following step was the separation/concentration of the mother solution, composed by a mixture of AMP and PG, using in a fixed bed of XAD-4 resin. Previously, adsorption constants, effective diffusion coefficients, and axial dispersion coefficients for AMP (at low concentrations, where a linear adsorption model fits the data) and PG were estimated by analysis of moments. The influence of temperature, flow rate, resin average particle diameter and the presence of ethanol on the performance of the system was assessed. The results obtained have shown that lower resin average particle diameters, as expected, leaded to a significant improve in the resolution of the elution curve of PG, and higher temperatures decreased retention times. The fixed bed was capable to separate, in an efficient way, a mixture of AMP and PG, reaching a separation resolution of 1.60 using a flow rate of 0.5 mL/min. Increasing ethanol concentration in the mobile phase influenced significantly the elution curves for both components. AMP de-sorption was facilitated and consequently, 5-fold and 2-fold reduction of the bed volume was achieved for AMP and PG, respectively. These results allowed the proposal of the following protocol for AMP purification, when it is reach in the solid form, containing PG as impurity: solubilization at pH 8,5 of the crystal mixture (AMP and PG), obtained from the antibiotic synthesis. Filtration of the solution, obtaining PG crystals. Reduction of the pH of the solution (containing PG, together with high concentrations of AMP), to precipitate the antibiotic at its isoelectric point. Concentration of the mother solution through adsorption on XAD-4 resin, using a water as mobile phase for adsorption and 15% (v/v) of ethanol for AMP elution. The concentrated solution should be recycled to the synthesis reactor.
id SCAR_4239340729da1cbefd1bdaf51b04ccea
oai_identifier_str oai:repositorio.ufscar.br:ufscar/3898
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Vieira, Marcelo FernandesGiordano, Raquel de Lima Camargohttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4768096Z136680606-1451-48eb-b392-63f150397ae32016-06-02T19:55:29Z2004-12-162016-06-02T19:55:29Z2003-11-07VIEIRA, Marcelo Fernandes. Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.. 2003. 167 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2003.https://repositorio.ufscar.br/handle/ufscar/3898The separation/concentration process of the products obtained from the enzymatic synthesis of ampicillin (AMP) catalyzed by immobilized penicillin G acylase was the focus of this Thesis. Hydrophobic resin adsorption and isoelectric precipitation were the processes herein evaluated. The antibiotic was produced in the solid phase, from 6-aminopenicillanic acid (6-APA) and phenylglycine methyl ester (PGME), and phenylglice (PG) was an undesired product. The immobilized enzyme was retained in the reactor by a sieve and the precipitated products formed (AMP and PG) were withdrawn and further dissolved at alkaline pH. After a filtration step, PG crystals were retrieved. In a second step, AMP crystals could be obtained by isoelectric precipitation. A combined process for separation/concentration of AMP, using isoelectric precipitation and hydrophobic adsorption, was put forth. The isolectric points of the molecules involved in the enzymatic synthesis were determined. In addition, the pH influence (range 5.5-7.5) on the solubility of the compounds was assessed. The results, in accordance with the literature, have shown that a pH increase leaded to an increase of the solubility of AMP and 6-APA. On the other hand, PGME solubility decreased with pH, while PG solubility was practically constant in this pH range. The adsorption efficiency and selectivity of three hydrophobic commercial resins XAD-4, XAD-7 and XAD-761 (Rohm and Haas) were evaluated at different pHs for the separation of dissolved products and unconverted reactants. Batch experiments were carried out to determine which resin had higher AMP adsorption capacity and higher selectivity (AMP/PG), at different pHs. XAD-4 was chosen: it presented higher selectivity (maximum AMP/PG = 7,0 at pH 8.5) and adsorption capacity (maximum 455 mg of AMP/g of resin, at pH 6.5). Equilibrium adsorption models were fitted: linear and Langmuir models represented PG and AMP adsorption on XAD-4 resin at pH 6.5, respectively. In a parallel work, our research group has decided to integrate synthesis and separation (precipitation of the products) in the enzymatic reactor: AMP and PG were in solid phase, and the immobilized enzyme was separated by sieving. Consequently, a combined process using isolectric precipitation and hydrophobic adsorption to separate/concentrate the AMP coming from enzymatic synthesis, with PG as impurity, was proposed. Based on the physical-chemical properties of the components, the separation process started by the elevation of pH, aiming at dissolving all AMP crystals, together with a minimum of PG crystals. Better results were obtained using pH 8.5. After filtration, un-dissolved PG was obtained. In a second step, the pH it was brought to the AMP isolectric point, causing its precipitation. Two acids and two temperatures were evaluated in this step: chloridric and sulfuric acid, 4 and 250C. Better results were obtained at 40C. No significant difference observed between the two acids. AMP crystals had purity above 97% at 40C. The following step was the separation/concentration of the mother solution, composed by a mixture of AMP and PG, using in a fixed bed of XAD-4 resin. Previously, adsorption constants, effective diffusion coefficients, and axial dispersion coefficients for AMP (at low concentrations, where a linear adsorption model fits the data) and PG were estimated by analysis of moments. The influence of temperature, flow rate, resin average particle diameter and the presence of ethanol on the performance of the system was assessed. The results obtained have shown that lower resin average particle diameters, as expected, leaded to a significant improve in the resolution of the elution curve of PG, and higher temperatures decreased retention times. The fixed bed was capable to separate, in an efficient way, a mixture of AMP and PG, reaching a separation resolution of 1.60 using a flow rate of 0.5 mL/min. Increasing ethanol concentration in the mobile phase influenced significantly the elution curves for both components. AMP de-sorption was facilitated and consequently, 5-fold and 2-fold reduction of the bed volume was achieved for AMP and PG, respectively. These results allowed the proposal of the following protocol for AMP purification, when it is reach in the solid form, containing PG as impurity: solubilization at pH 8,5 of the crystal mixture (AMP and PG), obtained from the antibiotic synthesis. Filtration of the solution, obtaining PG crystals. Reduction of the pH of the solution (containing PG, together with high concentrations of AMP), to precipitate the antibiotic at its isoelectric point. Concentration of the mother solution through adsorption on XAD-4 resin, using a water as mobile phase for adsorption and 15% (v/v) of ethanol for AMP elution. The concentrated solution should be recycled to the synthesis reactor.Estudou-se neste trabalho o processo de Separação/concentração dos produtos da síntese de ampicilina, catalisada pela enzima penicilina G acilase imobilizada, através das técnicas de adsorção em resina hidrofóbica e precipitação no ponto isoelétrico. O antibiótico era produzido pela reação entre ácido 6-amino penicilânico (6-APA) e éster metílicode fenilglicina (EMFG), gerando também fenilglicina (FG) como sub-produto. Visando conhecimento das propriedades físico-químicas dos componentes da reação, a pesquisa se iniciou pela determinação dos pontos isoelétricos dos compostos que envolvem a reação de síntese, assim como determinação da influência do pH (na faixa de 5,5 a 7,5) na solubilidade dos mesmos. Os resultados obtidos, que estão em acordo com os disponíveis na literatura, mostraram que o aumento do pH conduz a um aumento na solubilidade da ampicilina e de 6-APA. No sentido oposto, o éster metílico de fenilglicina apresenta queda na Solubilidade com o aumento do pH, enquanto a fenilglicina mantém seu limite de solubilidade, praticamente, constante. Foram avaliadas a seguir as eficiências de adsorção e seletividades das resinas XAD-4, XAD-7 e XAD-761, a diferentes valores de pH, visando separação entre reagentes não convertidos e produtos em solução. Os resultados obtidos através de ensaios em batelada mostraram que a resina XAD-4 apresentava os melhores valores de seletividade e capacidade de adsorção. Essa resina atingiu uma razão de ampi/FG= 7,0, ou seja, a resina adsorve 7 vezes mais ampicilina do que fenilglicina a pH 8,5. e apresentou capacidade de adsorção máxima de, aproximadamente, 455 mg de ampicilina/g de resina, a pH 6,5. Diferentes modelos de equilíbrio de adsorção foram ajustados aos dados experimentais: os modelos Linear e Langmuir representaram a adsorção de FG e ampicilina sobre a resinas XAD-4 a pH 6,5, respectivamente. Em trabalho paralelo, o grupo definiu-se por processo de produção de ampicilina através de síntese integrada à Separação. Nesse processo, ampicilina e fenilglicina são obtidas na forma cristalina, separando-se o biocatalisador por peneiramento. Passou-se a avaliar assim a utilização de um processo Combinado de precipitação no ponto isoelétrico e adsorção hidrofóbica para separação e/ou concentração de ampicilina obtida por síntese enzimática, tendo como impureza fenilglicina. Baseando-se nas propriedades físico-químicas dos compostos, se iniciou o processo de separação pela elevação do pH, visando dissolução de todos os cristais de ampicilina e a menor possível de fenilglicina. Foram avaliados os valores de pH 8,5 e 9,5, sendo o pH 8,5 o escolhido como mais adequado. Através de filtração, fenilglicina pura não dissolvida podia ser obtida. Num segundo estágio, diminuía-se o pH até o ponto isoelétrico da ampicilina visando sua precipitação. Dois ácidos e duas temperaturas foram avaliados nessa etapa, clorídrico e sulfúrico, a 4 e 250C. Os melhores resultados foram obtidos a 40C, não se observando diferenças significativas para os dois ácidos, os quais permitiram atingir graus de pureza acima de 97% para ampicilina, a 40C. Estudou-se a seguir a separação e/ou concentração da solução mãe, composta de uma mistura de ampicilina e fenilglicina, através de adsorção em leito fixo, contendo a resina XAD-4 que foi previamente selecionada. Inicialmente, foram determinados os coeficientes de transferência de massa e dispersão axial para ampicilina (a baixas concentrações nas quais o modelo linear era ajustado) e fenilglicina, por análise de momento. Foram estudadas também as influências da temperatura, diâmetro médio das partículas da resina, conteúdo de etanol e vazão da fase móvel na performance do sistema. Os resultados obtidos mostraram que a diminuição no diâmetro das partículas, conforme previsto, conduzia a uma melhora significativa na resolução da curva de eluição da fenilglicina e que o aumento na temperatura (na faixa de 5 a 45oC) levou a uma diminuição dos tempos de retenção. Os resultados obtidos demonstraram ainda que a coluna foi capaz de separar de forma eficiente uma mistura de ampicilina e fenilglicina alcançando uma resolução de 1,60 para uma vazão de 0,5 mL/min. O aumento do conteúdo de etanol na fase móvel influencia de forma significativa as curvas de eluição dos compostos, facilitando a dessorção de ampicilina; obtendo-se reduções no número de volumes de leito para eluição de 5 e 2 vezes para ampicilina e fenilglicina, respectivamente. Os estudos realizados permitiram assim a proposição do seguinte protocolo para purificação de ampicilina gerada na forma sólida contendo fenilglicina como impureza: Solubilização da mistura de cristais (ampicilina e fenilglicina), obtidos durante a síntese, a pH 8,5; filtração da solução obtendo-se cristais de fenilglicina com alto grau de pureza. Redução do pH da solução (ampicilina em alta concentração e fenilglicina) para precipitação do antibiótico no seu ponto isoelétrico. Concentração da solução mãe por adsorção na resina XAD-4 e eluição com etanol 15% (v/v) de etanol, com retorno da solução concentrada ao reator de síntese.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarBREngenharia bioquímicaAdsorçãoAmpicilinaCristalizaçãoSíntese enzimáticaPurificação de antibióticosENGENHARIAS::ENGENHARIA QUIMICASeparação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-187b60e6c-591e-4a38-94f3-e75e2beebea0info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDoutMFV.pdfapplication/pdf2941614https://repositorio.ufscar.br/bitstream/ufscar/3898/1/DoutMFV.pdfc89443c6ac79393c7b5d25f9d4a761dbMD51THUMBNAILDoutMFV.pdf.jpgDoutMFV.pdf.jpgIM Thumbnailimage/jpeg6950https://repositorio.ufscar.br/bitstream/ufscar/3898/2/DoutMFV.pdf.jpga8761100ef6632091b441057fe504ff2MD52ufscar/38982023-09-18 18:30:58.331oai:repositorio.ufscar.br:ufscar/3898Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:58Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
title Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
spellingShingle Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
Vieira, Marcelo Fernandes
Engenharia bioquímica
Adsorção
Ampicilina
Cristalização
Síntese enzimática
Purificação de antibióticos
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
title_full Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
title_fullStr Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
title_full_unstemmed Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
title_sort Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.
author Vieira, Marcelo Fernandes
author_facet Vieira, Marcelo Fernandes
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4768096Z1
dc.contributor.author.fl_str_mv Vieira, Marcelo Fernandes
dc.contributor.advisor1.fl_str_mv Giordano, Raquel de Lima Camargo
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0
dc.contributor.authorID.fl_str_mv 36680606-1451-48eb-b392-63f150397ae3
contributor_str_mv Giordano, Raquel de Lima Camargo
dc.subject.por.fl_str_mv Engenharia bioquímica
Adsorção
Ampicilina
Cristalização
Síntese enzimática
Purificação de antibióticos
topic Engenharia bioquímica
Adsorção
Ampicilina
Cristalização
Síntese enzimática
Purificação de antibióticos
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description The separation/concentration process of the products obtained from the enzymatic synthesis of ampicillin (AMP) catalyzed by immobilized penicillin G acylase was the focus of this Thesis. Hydrophobic resin adsorption and isoelectric precipitation were the processes herein evaluated. The antibiotic was produced in the solid phase, from 6-aminopenicillanic acid (6-APA) and phenylglycine methyl ester (PGME), and phenylglice (PG) was an undesired product. The immobilized enzyme was retained in the reactor by a sieve and the precipitated products formed (AMP and PG) were withdrawn and further dissolved at alkaline pH. After a filtration step, PG crystals were retrieved. In a second step, AMP crystals could be obtained by isoelectric precipitation. A combined process for separation/concentration of AMP, using isoelectric precipitation and hydrophobic adsorption, was put forth. The isolectric points of the molecules involved in the enzymatic synthesis were determined. In addition, the pH influence (range 5.5-7.5) on the solubility of the compounds was assessed. The results, in accordance with the literature, have shown that a pH increase leaded to an increase of the solubility of AMP and 6-APA. On the other hand, PGME solubility decreased with pH, while PG solubility was practically constant in this pH range. The adsorption efficiency and selectivity of three hydrophobic commercial resins XAD-4, XAD-7 and XAD-761 (Rohm and Haas) were evaluated at different pHs for the separation of dissolved products and unconverted reactants. Batch experiments were carried out to determine which resin had higher AMP adsorption capacity and higher selectivity (AMP/PG), at different pHs. XAD-4 was chosen: it presented higher selectivity (maximum AMP/PG = 7,0 at pH 8.5) and adsorption capacity (maximum 455 mg of AMP/g of resin, at pH 6.5). Equilibrium adsorption models were fitted: linear and Langmuir models represented PG and AMP adsorption on XAD-4 resin at pH 6.5, respectively. In a parallel work, our research group has decided to integrate synthesis and separation (precipitation of the products) in the enzymatic reactor: AMP and PG were in solid phase, and the immobilized enzyme was separated by sieving. Consequently, a combined process using isolectric precipitation and hydrophobic adsorption to separate/concentrate the AMP coming from enzymatic synthesis, with PG as impurity, was proposed. Based on the physical-chemical properties of the components, the separation process started by the elevation of pH, aiming at dissolving all AMP crystals, together with a minimum of PG crystals. Better results were obtained using pH 8.5. After filtration, un-dissolved PG was obtained. In a second step, the pH it was brought to the AMP isolectric point, causing its precipitation. Two acids and two temperatures were evaluated in this step: chloridric and sulfuric acid, 4 and 250C. Better results were obtained at 40C. No significant difference observed between the two acids. AMP crystals had purity above 97% at 40C. The following step was the separation/concentration of the mother solution, composed by a mixture of AMP and PG, using in a fixed bed of XAD-4 resin. Previously, adsorption constants, effective diffusion coefficients, and axial dispersion coefficients for AMP (at low concentrations, where a linear adsorption model fits the data) and PG were estimated by analysis of moments. The influence of temperature, flow rate, resin average particle diameter and the presence of ethanol on the performance of the system was assessed. The results obtained have shown that lower resin average particle diameters, as expected, leaded to a significant improve in the resolution of the elution curve of PG, and higher temperatures decreased retention times. The fixed bed was capable to separate, in an efficient way, a mixture of AMP and PG, reaching a separation resolution of 1.60 using a flow rate of 0.5 mL/min. Increasing ethanol concentration in the mobile phase influenced significantly the elution curves for both components. AMP de-sorption was facilitated and consequently, 5-fold and 2-fold reduction of the bed volume was achieved for AMP and PG, respectively. These results allowed the proposal of the following protocol for AMP purification, when it is reach in the solid form, containing PG as impurity: solubilization at pH 8,5 of the crystal mixture (AMP and PG), obtained from the antibiotic synthesis. Filtration of the solution, obtaining PG crystals. Reduction of the pH of the solution (containing PG, together with high concentrations of AMP), to precipitate the antibiotic at its isoelectric point. Concentration of the mother solution through adsorption on XAD-4 resin, using a water as mobile phase for adsorption and 15% (v/v) of ethanol for AMP elution. The concentrated solution should be recycled to the synthesis reactor.
publishDate 2003
dc.date.issued.fl_str_mv 2003-11-07
dc.date.available.fl_str_mv 2004-12-16
2016-06-02T19:55:29Z
dc.date.accessioned.fl_str_mv 2016-06-02T19:55:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VIEIRA, Marcelo Fernandes. Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.. 2003. 167 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2003.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/3898
identifier_str_mv VIEIRA, Marcelo Fernandes. Separação de ampicilina produzida enzimaticamente por reação entre éster metílico de fenilglicina e ácido 6-aminopenicilânico.. 2003. 167 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2003.
url https://repositorio.ufscar.br/handle/ufscar/3898
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 87b60e6c-591e-4a38-94f3-e75e2beebea0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/3898/1/DoutMFV.pdf
https://repositorio.ufscar.br/bitstream/ufscar/3898/2/DoutMFV.pdf.jpg
bitstream.checksum.fl_str_mv c89443c6ac79393c7b5d25f9d4a761db
a8761100ef6632091b441057fe504ff2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136270993883136