Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura

Detalhes bibliográficos
Autor(a) principal: Villas-bôas, Lúcia Adriana
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/705
Resumo: Solid Oxide Fuel Cells (SOFCs) are clean and efficient energy conversion devices, considered as one of the key enabling technologies for future hydrogen economy and for stationary power generation. However novel materials are needed for reducing the working temperature which limits the economic viability of fuel cells due to long-term stability problems. Ceria-based electrolytes, due to their high ionic conductivity with respect to traditional zirconia-based electrolytes, are amongst the most promising oxide-ion conductors to be used in intermediate temperature SOFCs operating at 500-700 ºC with high efficiency. The major difficulty in using ceria as electrolyte is related to Ce+4 to Ce+3 reductions, which occurs at low oxygen partial pressure and at high temperature (this is the electrolyte condition at the anode region). Another drawback in using ceria solid solutions is the poor sinterability which requires high temperatures (1400-1600 ºC) to achieve high densification (> 95%), makes the manufacturing process costly. Several approaches in research have been done to reduce the device working temperature and also the electrolyte sintering temperature. In the present work, the concomitant use of sintering aids (Co and Zn) and nanopowders was investigated. Besides this, three distinct processing routes were adopted and afterwards sintered by a two-step process. The sinterability, microstructure, electrical conductivity and electrolyte domain of Co or Zn-doped Ce0.8Gd0.2O1.9 samples were evaluated against the performance of undoped powders. Cobalt or zinc additions were effective as sintering aid allowing peak sintering temperatures about 950 °C to reach densifications in excess of 93%, showing no evidence for the presence of secondary phases. The electrical properties and microstructure were dependent of processing route, additives and sintering profile. The total conductivity at 800 °C of pressed samples sintered at 1200 °C-1000 °C/10h with 0,4 mol% Zn (6.7x10-2 S/cm) and 2 mol% Co (7.4x10-2 S/cm) were similar to undoped samples (7.2x10-2 S/cm), showing that Zn and Co had a positive effect on densification without compromising the electrical conductivity and electrolyte domain.
id SCAR_443740087e8cad3f6820ee6880c856b9
oai_identifier_str oai:repositorio.ufscar.br:ufscar/705
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Villas-bôas, Lúcia AdrianaSouza, Dulcina Maria Pinatti Ferreira dehttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787362Y3http://lattes.cnpq.br/5196590498448169e19b6526-53db-4314-87cb-6eb4f189baac2016-06-02T19:10:15Z2013-06-252016-06-02T19:10:15Z2013-04-11https://repositorio.ufscar.br/handle/ufscar/705Solid Oxide Fuel Cells (SOFCs) are clean and efficient energy conversion devices, considered as one of the key enabling technologies for future hydrogen economy and for stationary power generation. However novel materials are needed for reducing the working temperature which limits the economic viability of fuel cells due to long-term stability problems. Ceria-based electrolytes, due to their high ionic conductivity with respect to traditional zirconia-based electrolytes, are amongst the most promising oxide-ion conductors to be used in intermediate temperature SOFCs operating at 500-700 ºC with high efficiency. The major difficulty in using ceria as electrolyte is related to Ce+4 to Ce+3 reductions, which occurs at low oxygen partial pressure and at high temperature (this is the electrolyte condition at the anode region). Another drawback in using ceria solid solutions is the poor sinterability which requires high temperatures (1400-1600 ºC) to achieve high densification (> 95%), makes the manufacturing process costly. Several approaches in research have been done to reduce the device working temperature and also the electrolyte sintering temperature. In the present work, the concomitant use of sintering aids (Co and Zn) and nanopowders was investigated. Besides this, three distinct processing routes were adopted and afterwards sintered by a two-step process. The sinterability, microstructure, electrical conductivity and electrolyte domain of Co or Zn-doped Ce0.8Gd0.2O1.9 samples were evaluated against the performance of undoped powders. Cobalt or zinc additions were effective as sintering aid allowing peak sintering temperatures about 950 °C to reach densifications in excess of 93%, showing no evidence for the presence of secondary phases. The electrical properties and microstructure were dependent of processing route, additives and sintering profile. The total conductivity at 800 °C of pressed samples sintered at 1200 °C-1000 °C/10h with 0,4 mol% Zn (6.7x10-2 S/cm) and 2 mol% Co (7.4x10-2 S/cm) were similar to undoped samples (7.2x10-2 S/cm), showing that Zn and Co had a positive effect on densification without compromising the electrical conductivity and electrolyte domain.Pilha a combustível de óxido sólido (PaCOS) é um eficiente dispositivo de conversão de energia e tem sido considerada uma das principais tecnologias para inserção da economia de hidrogênio e para a geração de energia estacionária. Entretanto, devido à alta temperatura de operação deste dispositivo, o que o inviabiliza economicamente devido a problemas de estabilidade em longo prazo, faz com que haja uma intensa busca por novos materiais para reduzir a temperatura de operação. Eletrólitos sólidos de céria, devido à sua elevada condutividade iônica com relação aos eletrólitos de zircônia, estão entre os óxidos condutores iônicos mais promissores para PaCOS de temperatura intermediária, operando a 500-700 ºC com alta eficiência. Entretanto, a maior dificuldade em se utilizar céria está relacionada com a redução de Ce4+ em Ce3+ que ocorre em altas temperaturas e baixas pressões parciais de oxigênio (região do anodo à qual o eletrólito é submetido). Outra desvantagem na utilização de soluções sólidas de céria é a baixa sinterabilidade que requer altas temperaturas (1400-1600 ºC) para atingir elevadas densificações (> 95%) onerando o processo de fabricação. Vários enfoques têm sido dados às pesquisas visando diminuir a temperatura de operação do dispositivo e também da temperatura de sinterização dos eletrólitos. No presente trabalho o enfoque foi diminuir a temperatura de sinterização utilizando nanopós processados de diferentes maneiras associado ao uso de aditivos de sinterização (Co e Zn). Foram avaliadas a sinterabilidade, microestrutura, condutividade elétrica e domínio eletrolítico de amostras de Ce0,8Gd0,2O1,9 puro e com Co ou Zn. Os aditivos de sinterização foram eficazes permitindo temperaturas de pico de sinterização de 950 °C com densificações acima de 93% e sem evidência de presença de fases secundárias. As propriedades elétricas e microestruturais foram dependentes do tipo de processamento, aditivos e perfil de sinterização. A condutividade total a 800 °C de amostras sinterizadas a 1200 ºC-1000 ºC/10h com 0,4% mol de Zn (6,7x10-2 S/cm) e 2% mol de Co (7,4x10-2 S/cm) foram similares a de amostras não dopadas (7,2x10-2 S/cm), indicando que Zn e Co teve um efeito positivo sobre a densificação sem comprometer a condutividade elétrica e o domínio eletrolítico.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarBRCerâmica eletrônicaCélula a combustívelCéria dopadaEletrólito sólidoAditivos de sinterizaçãoCondutividade elétricaENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICANano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestruturaGadolinium-doped nano ceria: electrical conductivity and correlation with micro and nanostructureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-170fa011e-1108-4239-97ab-fe5cd4b2d233info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL5211.pdfapplication/pdf7028059https://repositorio.ufscar.br/bitstream/ufscar/705/1/5211.pdf2b71fd3d4f3fed6da55ab40a9fca68e0MD51TEXT5211.pdf.txt5211.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/705/2/5211.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL5211.pdf.jpg5211.pdf.jpgIM Thumbnailimage/jpeg6331https://repositorio.ufscar.br/bitstream/ufscar/705/3/5211.pdf.jpg6915240f04472c52019cca82eadceb66MD53ufscar/7052023-09-18 18:32:20.062oai:repositorio.ufscar.br:ufscar/705Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
dc.title.alternative.eng.fl_str_mv Gadolinium-doped nano ceria: electrical conductivity and correlation with micro and nanostructure
title Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
spellingShingle Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
Villas-bôas, Lúcia Adriana
Cerâmica eletrônica
Célula a combustível
Céria dopada
Eletrólito sólido
Aditivos de sinterização
Condutividade elétrica
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
title_full Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
title_fullStr Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
title_full_unstemmed Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
title_sort Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
author Villas-bôas, Lúcia Adriana
author_facet Villas-bôas, Lúcia Adriana
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5196590498448169
dc.contributor.author.fl_str_mv Villas-bôas, Lúcia Adriana
dc.contributor.advisor1.fl_str_mv Souza, Dulcina Maria Pinatti Ferreira de
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787362Y3
dc.contributor.authorID.fl_str_mv e19b6526-53db-4314-87cb-6eb4f189baac
contributor_str_mv Souza, Dulcina Maria Pinatti Ferreira de
dc.subject.por.fl_str_mv Cerâmica eletrônica
Célula a combustível
Céria dopada
Eletrólito sólido
Aditivos de sinterização
Condutividade elétrica
topic Cerâmica eletrônica
Célula a combustível
Céria dopada
Eletrólito sólido
Aditivos de sinterização
Condutividade elétrica
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description Solid Oxide Fuel Cells (SOFCs) are clean and efficient energy conversion devices, considered as one of the key enabling technologies for future hydrogen economy and for stationary power generation. However novel materials are needed for reducing the working temperature which limits the economic viability of fuel cells due to long-term stability problems. Ceria-based electrolytes, due to their high ionic conductivity with respect to traditional zirconia-based electrolytes, are amongst the most promising oxide-ion conductors to be used in intermediate temperature SOFCs operating at 500-700 ºC with high efficiency. The major difficulty in using ceria as electrolyte is related to Ce+4 to Ce+3 reductions, which occurs at low oxygen partial pressure and at high temperature (this is the electrolyte condition at the anode region). Another drawback in using ceria solid solutions is the poor sinterability which requires high temperatures (1400-1600 ºC) to achieve high densification (> 95%), makes the manufacturing process costly. Several approaches in research have been done to reduce the device working temperature and also the electrolyte sintering temperature. In the present work, the concomitant use of sintering aids (Co and Zn) and nanopowders was investigated. Besides this, three distinct processing routes were adopted and afterwards sintered by a two-step process. The sinterability, microstructure, electrical conductivity and electrolyte domain of Co or Zn-doped Ce0.8Gd0.2O1.9 samples were evaluated against the performance of undoped powders. Cobalt or zinc additions were effective as sintering aid allowing peak sintering temperatures about 950 °C to reach densifications in excess of 93%, showing no evidence for the presence of secondary phases. The electrical properties and microstructure were dependent of processing route, additives and sintering profile. The total conductivity at 800 °C of pressed samples sintered at 1200 °C-1000 °C/10h with 0,4 mol% Zn (6.7x10-2 S/cm) and 2 mol% Co (7.4x10-2 S/cm) were similar to undoped samples (7.2x10-2 S/cm), showing that Zn and Co had a positive effect on densification without compromising the electrical conductivity and electrolyte domain.
publishDate 2013
dc.date.available.fl_str_mv 2013-06-25
2016-06-02T19:10:15Z
dc.date.issued.fl_str_mv 2013-04-11
dc.date.accessioned.fl_str_mv 2016-06-02T19:10:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/705
url https://repositorio.ufscar.br/handle/ufscar/705
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 70fa011e-1108-4239-97ab-fe5cd4b2d233
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/705/1/5211.pdf
https://repositorio.ufscar.br/bitstream/ufscar/705/2/5211.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/705/3/5211.pdf.jpg
bitstream.checksum.fl_str_mv 2b71fd3d4f3fed6da55ab40a9fca68e0
d41d8cd98f00b204e9800998ecf8427e
6915240f04472c52019cca82eadceb66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715504998645760