Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/705 |
Resumo: | Solid Oxide Fuel Cells (SOFCs) are clean and efficient energy conversion devices, considered as one of the key enabling technologies for future hydrogen economy and for stationary power generation. However novel materials are needed for reducing the working temperature which limits the economic viability of fuel cells due to long-term stability problems. Ceria-based electrolytes, due to their high ionic conductivity with respect to traditional zirconia-based electrolytes, are amongst the most promising oxide-ion conductors to be used in intermediate temperature SOFCs operating at 500-700 ºC with high efficiency. The major difficulty in using ceria as electrolyte is related to Ce+4 to Ce+3 reductions, which occurs at low oxygen partial pressure and at high temperature (this is the electrolyte condition at the anode region). Another drawback in using ceria solid solutions is the poor sinterability which requires high temperatures (1400-1600 ºC) to achieve high densification (> 95%), makes the manufacturing process costly. Several approaches in research have been done to reduce the device working temperature and also the electrolyte sintering temperature. In the present work, the concomitant use of sintering aids (Co and Zn) and nanopowders was investigated. Besides this, three distinct processing routes were adopted and afterwards sintered by a two-step process. The sinterability, microstructure, electrical conductivity and electrolyte domain of Co or Zn-doped Ce0.8Gd0.2O1.9 samples were evaluated against the performance of undoped powders. Cobalt or zinc additions were effective as sintering aid allowing peak sintering temperatures about 950 °C to reach densifications in excess of 93%, showing no evidence for the presence of secondary phases. The electrical properties and microstructure were dependent of processing route, additives and sintering profile. The total conductivity at 800 °C of pressed samples sintered at 1200 °C-1000 °C/10h with 0,4 mol% Zn (6.7x10-2 S/cm) and 2 mol% Co (7.4x10-2 S/cm) were similar to undoped samples (7.2x10-2 S/cm), showing that Zn and Co had a positive effect on densification without compromising the electrical conductivity and electrolyte domain. |
id |
SCAR_443740087e8cad3f6820ee6880c856b9 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/705 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Villas-bôas, Lúcia AdrianaSouza, Dulcina Maria Pinatti Ferreira dehttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787362Y3http://lattes.cnpq.br/5196590498448169e19b6526-53db-4314-87cb-6eb4f189baac2016-06-02T19:10:15Z2013-06-252016-06-02T19:10:15Z2013-04-11https://repositorio.ufscar.br/handle/ufscar/705Solid Oxide Fuel Cells (SOFCs) are clean and efficient energy conversion devices, considered as one of the key enabling technologies for future hydrogen economy and for stationary power generation. However novel materials are needed for reducing the working temperature which limits the economic viability of fuel cells due to long-term stability problems. Ceria-based electrolytes, due to their high ionic conductivity with respect to traditional zirconia-based electrolytes, are amongst the most promising oxide-ion conductors to be used in intermediate temperature SOFCs operating at 500-700 ºC with high efficiency. The major difficulty in using ceria as electrolyte is related to Ce+4 to Ce+3 reductions, which occurs at low oxygen partial pressure and at high temperature (this is the electrolyte condition at the anode region). Another drawback in using ceria solid solutions is the poor sinterability which requires high temperatures (1400-1600 ºC) to achieve high densification (> 95%), makes the manufacturing process costly. Several approaches in research have been done to reduce the device working temperature and also the electrolyte sintering temperature. In the present work, the concomitant use of sintering aids (Co and Zn) and nanopowders was investigated. Besides this, three distinct processing routes were adopted and afterwards sintered by a two-step process. The sinterability, microstructure, electrical conductivity and electrolyte domain of Co or Zn-doped Ce0.8Gd0.2O1.9 samples were evaluated against the performance of undoped powders. Cobalt or zinc additions were effective as sintering aid allowing peak sintering temperatures about 950 °C to reach densifications in excess of 93%, showing no evidence for the presence of secondary phases. The electrical properties and microstructure were dependent of processing route, additives and sintering profile. The total conductivity at 800 °C of pressed samples sintered at 1200 °C-1000 °C/10h with 0,4 mol% Zn (6.7x10-2 S/cm) and 2 mol% Co (7.4x10-2 S/cm) were similar to undoped samples (7.2x10-2 S/cm), showing that Zn and Co had a positive effect on densification without compromising the electrical conductivity and electrolyte domain.Pilha a combustível de óxido sólido (PaCOS) é um eficiente dispositivo de conversão de energia e tem sido considerada uma das principais tecnologias para inserção da economia de hidrogênio e para a geração de energia estacionária. Entretanto, devido à alta temperatura de operação deste dispositivo, o que o inviabiliza economicamente devido a problemas de estabilidade em longo prazo, faz com que haja uma intensa busca por novos materiais para reduzir a temperatura de operação. Eletrólitos sólidos de céria, devido à sua elevada condutividade iônica com relação aos eletrólitos de zircônia, estão entre os óxidos condutores iônicos mais promissores para PaCOS de temperatura intermediária, operando a 500-700 ºC com alta eficiência. Entretanto, a maior dificuldade em se utilizar céria está relacionada com a redução de Ce4+ em Ce3+ que ocorre em altas temperaturas e baixas pressões parciais de oxigênio (região do anodo à qual o eletrólito é submetido). Outra desvantagem na utilização de soluções sólidas de céria é a baixa sinterabilidade que requer altas temperaturas (1400-1600 ºC) para atingir elevadas densificações (> 95%) onerando o processo de fabricação. Vários enfoques têm sido dados às pesquisas visando diminuir a temperatura de operação do dispositivo e também da temperatura de sinterização dos eletrólitos. No presente trabalho o enfoque foi diminuir a temperatura de sinterização utilizando nanopós processados de diferentes maneiras associado ao uso de aditivos de sinterização (Co e Zn). Foram avaliadas a sinterabilidade, microestrutura, condutividade elétrica e domínio eletrolítico de amostras de Ce0,8Gd0,2O1,9 puro e com Co ou Zn. Os aditivos de sinterização foram eficazes permitindo temperaturas de pico de sinterização de 950 °C com densificações acima de 93% e sem evidência de presença de fases secundárias. As propriedades elétricas e microestruturais foram dependentes do tipo de processamento, aditivos e perfil de sinterização. A condutividade total a 800 °C de amostras sinterizadas a 1200 ºC-1000 ºC/10h com 0,4% mol de Zn (6,7x10-2 S/cm) e 2% mol de Co (7,4x10-2 S/cm) foram similares a de amostras não dopadas (7,2x10-2 S/cm), indicando que Zn e Co teve um efeito positivo sobre a densificação sem comprometer a condutividade elétrica e o domínio eletrolítico.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarBRCerâmica eletrônicaCélula a combustívelCéria dopadaEletrólito sólidoAditivos de sinterizaçãoCondutividade elétricaENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICANano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestruturaGadolinium-doped nano ceria: electrical conductivity and correlation with micro and nanostructureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-170fa011e-1108-4239-97ab-fe5cd4b2d233info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL5211.pdfapplication/pdf7028059https://repositorio.ufscar.br/bitstream/ufscar/705/1/5211.pdf2b71fd3d4f3fed6da55ab40a9fca68e0MD51TEXT5211.pdf.txt5211.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/705/2/5211.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL5211.pdf.jpg5211.pdf.jpgIM Thumbnailimage/jpeg6331https://repositorio.ufscar.br/bitstream/ufscar/705/3/5211.pdf.jpg6915240f04472c52019cca82eadceb66MD53ufscar/7052023-09-18 18:32:20.062oai:repositorio.ufscar.br:ufscar/705Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:20Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
dc.title.alternative.eng.fl_str_mv |
Gadolinium-doped nano ceria: electrical conductivity and correlation with micro and nanostructure |
title |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
spellingShingle |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura Villas-bôas, Lúcia Adriana Cerâmica eletrônica Célula a combustível Céria dopada Eletrólito sólido Aditivos de sinterização Condutividade elétrica ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
title_short |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
title_full |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
title_fullStr |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
title_full_unstemmed |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
title_sort |
Nano céria dopada com gadolínia: condutividade elétrica e correlação com a micro e nanoestrutura |
author |
Villas-bôas, Lúcia Adriana |
author_facet |
Villas-bôas, Lúcia Adriana |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/5196590498448169 |
dc.contributor.author.fl_str_mv |
Villas-bôas, Lúcia Adriana |
dc.contributor.advisor1.fl_str_mv |
Souza, Dulcina Maria Pinatti Ferreira de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787362Y3 |
dc.contributor.authorID.fl_str_mv |
e19b6526-53db-4314-87cb-6eb4f189baac |
contributor_str_mv |
Souza, Dulcina Maria Pinatti Ferreira de |
dc.subject.por.fl_str_mv |
Cerâmica eletrônica Célula a combustível Céria dopada Eletrólito sólido Aditivos de sinterização Condutividade elétrica |
topic |
Cerâmica eletrônica Célula a combustível Céria dopada Eletrólito sólido Aditivos de sinterização Condutividade elétrica ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
description |
Solid Oxide Fuel Cells (SOFCs) are clean and efficient energy conversion devices, considered as one of the key enabling technologies for future hydrogen economy and for stationary power generation. However novel materials are needed for reducing the working temperature which limits the economic viability of fuel cells due to long-term stability problems. Ceria-based electrolytes, due to their high ionic conductivity with respect to traditional zirconia-based electrolytes, are amongst the most promising oxide-ion conductors to be used in intermediate temperature SOFCs operating at 500-700 ºC with high efficiency. The major difficulty in using ceria as electrolyte is related to Ce+4 to Ce+3 reductions, which occurs at low oxygen partial pressure and at high temperature (this is the electrolyte condition at the anode region). Another drawback in using ceria solid solutions is the poor sinterability which requires high temperatures (1400-1600 ºC) to achieve high densification (> 95%), makes the manufacturing process costly. Several approaches in research have been done to reduce the device working temperature and also the electrolyte sintering temperature. In the present work, the concomitant use of sintering aids (Co and Zn) and nanopowders was investigated. Besides this, three distinct processing routes were adopted and afterwards sintered by a two-step process. The sinterability, microstructure, electrical conductivity and electrolyte domain of Co or Zn-doped Ce0.8Gd0.2O1.9 samples were evaluated against the performance of undoped powders. Cobalt or zinc additions were effective as sintering aid allowing peak sintering temperatures about 950 °C to reach densifications in excess of 93%, showing no evidence for the presence of secondary phases. The electrical properties and microstructure were dependent of processing route, additives and sintering profile. The total conductivity at 800 °C of pressed samples sintered at 1200 °C-1000 °C/10h with 0,4 mol% Zn (6.7x10-2 S/cm) and 2 mol% Co (7.4x10-2 S/cm) were similar to undoped samples (7.2x10-2 S/cm), showing that Zn and Co had a positive effect on densification without compromising the electrical conductivity and electrolyte domain. |
publishDate |
2013 |
dc.date.available.fl_str_mv |
2013-06-25 2016-06-02T19:10:15Z |
dc.date.issued.fl_str_mv |
2013-04-11 |
dc.date.accessioned.fl_str_mv |
2016-06-02T19:10:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/705 |
url |
https://repositorio.ufscar.br/handle/ufscar/705 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
70fa011e-1108-4239-97ab-fe5cd4b2d233 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/705/1/5211.pdf https://repositorio.ufscar.br/bitstream/ufscar/705/2/5211.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/705/3/5211.pdf.jpg |
bitstream.checksum.fl_str_mv |
2b71fd3d4f3fed6da55ab40a9fca68e0 d41d8cd98f00b204e9800998ecf8427e 6915240f04472c52019cca82eadceb66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715504998645760 |