Restauração de imagens utilizando aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: Pires, Rafael Gonçalves
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11451
Resumo: Image processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier.
id SCAR_476686f2bdb6b80c362eee099f08df22
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11451
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Pires, Rafael GonçalvesPapa, João Paulohttp://lattes.cnpq.br/9039182932747194Levada, Alexandre Luis Magalhãeshttp://lattes.cnpq.br/3341441596395463http://lattes.cnpq.br/8410467431339373417145d3-1734-432a-a758-04f54682a5852019-06-03T19:30:16Z2019-06-03T19:30:16Z2019-03-08PIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11451.https://repositorio.ufscar.br/handle/ufscar/11451Image processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier.Processamento de imagens é uma área que tem recebido considerável atenção nos últimos anos como resultado da evolução da tecnologia de computação digital. Uma das princi- pais técnicas de processamento de imagens diz respeito à restauração, a qual consiste no processo de suavização do ruı́do e realce dos detalhes, os quais são alterados devido a pro- blemas no processo de formação e transmissão da imagem. Partindo da eficácia das técnicas esparsas e de aprendizado de máquina encontradas na literatura no contexto de restauração, propomos a união dessas abordagens bem como sua avaliação em imagens tons de cinza. Também propomos um estudo de redes baseadas em energia como Máquinas de Boltz- mann Restritas para remoção de ruı́dos em imagens binárias e aplicação de classificadores mais recentes nesse contexto, tais como Floresta de Caminhos Ótimos. Experimentos que utilizam base de dados públicas corrompidas por diferentes degradações como ruı́do e/ou, borramento, evidenciam, em geral, a ineficaz aplicação da esparsidade às diferentes arqui- teturas de redes neurais, a eficácia das Máquinas de Boltzmann Restritas e do classificador Floresta de Caminhos Ótimos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAprendizado de máquinaRestauração de ImagensAprendizado profundoMachine learningImage restorationDeep learningCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORestauração de imagens utilizando aprendizado de máquinaImage restoration using machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALrafael_doutorado.pdfrafael_doutorado.pdfapplication/pdf21211520https://repositorio.ufscar.br/bitstream/ufscar/11451/1/rafael_doutorado.pdf4bb4cbb2d203a1d75a37849ebc9cbe57MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11451/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTrafael_doutorado.pdf.txtrafael_doutorado.pdf.txtExtracted texttext/plain376751https://repositorio.ufscar.br/bitstream/ufscar/11451/4/rafael_doutorado.pdf.txt9e68ee5f276e9496c722ab1b1ebd1cd3MD54THUMBNAILrafael_doutorado.pdf.jpgrafael_doutorado.pdf.jpgIM Thumbnailimage/jpeg7599https://repositorio.ufscar.br/bitstream/ufscar/11451/5/rafael_doutorado.pdf.jpgd3a20d3dc67156c519a0bc2096ec437bMD55ufscar/114512023-09-18 18:31:10.782oai:repositorio.ufscar.br:ufscar/11451TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:10Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Restauração de imagens utilizando aprendizado de máquina
dc.title.alternative.eng.fl_str_mv Image restoration using machine learning
title Restauração de imagens utilizando aprendizado de máquina
spellingShingle Restauração de imagens utilizando aprendizado de máquina
Pires, Rafael Gonçalves
Aprendizado de máquina
Restauração de Imagens
Aprendizado profundo
Machine learning
Image restoration
Deep learning
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Restauração de imagens utilizando aprendizado de máquina
title_full Restauração de imagens utilizando aprendizado de máquina
title_fullStr Restauração de imagens utilizando aprendizado de máquina
title_full_unstemmed Restauração de imagens utilizando aprendizado de máquina
title_sort Restauração de imagens utilizando aprendizado de máquina
author Pires, Rafael Gonçalves
author_facet Pires, Rafael Gonçalves
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8410467431339373
dc.contributor.author.fl_str_mv Pires, Rafael Gonçalves
dc.contributor.advisor1.fl_str_mv Papa, João Paulo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9039182932747194
dc.contributor.advisor-co1.fl_str_mv Levada, Alexandre Luis Magalhães
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3341441596395463
dc.contributor.authorID.fl_str_mv 417145d3-1734-432a-a758-04f54682a585
contributor_str_mv Papa, João Paulo
Levada, Alexandre Luis Magalhães
dc.subject.por.fl_str_mv Aprendizado de máquina
Restauração de Imagens
Aprendizado profundo
topic Aprendizado de máquina
Restauração de Imagens
Aprendizado profundo
Machine learning
Image restoration
Deep learning
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Machine learning
Image restoration
Deep learning
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Image processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-06-03T19:30:16Z
dc.date.available.fl_str_mv 2019-06-03T19:30:16Z
dc.date.issued.fl_str_mv 2019-03-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11451.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11451
identifier_str_mv PIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11451.
url https://repositorio.ufscar.br/handle/ufscar/11451
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11451/1/rafael_doutorado.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11451/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11451/4/rafael_doutorado.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11451/5/rafael_doutorado.pdf.jpg
bitstream.checksum.fl_str_mv 4bb4cbb2d203a1d75a37849ebc9cbe57
ae0398b6f8b235e40ad82cba6c50031d
9e68ee5f276e9496c722ab1b1ebd1cd3
d3a20d3dc67156c519a0bc2096ec437b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715604888092672