Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy

Detalhes bibliográficos
Autor(a) principal: Missio, André Luiz
Data de Publicação: 2022
Outros Autores: Otoni, Caio Gomide, Zhao, Bin, Beaumont, Marco, Khakalo, Alexey, Kämäräinen, Tero, Silva, Silvia Helena Fuentes da, Mattos, Bruno Dufau, Rojas, Orlando José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
DOI: 10.1021/acssuschemeng.2c02678
Texto Completo: https://doi.org/10.1021/acssuschemeng.2c02678
https://repositorio.ufscar.br/handle/ufscar/16898
https://pubs.acs.org/doi/10.1021/acssuschemeng.2c02678
Resumo: Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are ca. 30% stronger and ca. 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30–50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical–mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking.
id SCAR_51013a1106cbb5aeb929bb4df8a4ac1c
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16898
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Missio, André LuizOtoni, Caio GomideZhao, BinBeaumont, MarcoKhakalo, AlexeyKämäräinen, TeroSilva, Silvia Helena Fuentes daMattos, Bruno DufauRojas, Orlando Joséhttp://lattes.cnpq.br/9403804691367376http://lattes.cnpq.br/6923877786371495http://lattes.cnpq.br/8821138660917770e9775420-012c-4513-983f-50979c40f32bea3add03-8f33-4a32-8ed6-ab06d15770b842af24a9-42ec-4bb3-92cc-bdd568d9f7dfe71415f8-d4a8-459e-a61e-f597adb9550a386d1579-f241-44d7-8368-e6ffb077c1549d84764a-c0df-4d0a-9165-197632b6bbcf68df5e11-6db0-4def-95f2-931049a102a16500504a-64ff-4bb5-a8b4-b1a7e74a484378366b42-5952-4069-9eca-0d549ead3b9a2022-10-19T12:52:34Z2022-10-19T12:52:34Z2022-07-25https://doi.org/10.1021/acssuschemeng.2c02678MISSIO, André Luiz; OTONI, Caio Gomide; ZHAO, Bin; BEAUMONT, Marco; KHAKALO, Alexey; KÄMÄRÄINEN, Tero; SILVA, Silvia Helena Fuentes da; MATTOS, Bruno Dufau; ROJAS, Orlando José. Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy. ACS Sustainable Chemistry & Engineering, v. 10, n. 31, p. 10303-10310, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16898.2168-0485https://repositorio.ufscar.br/handle/ufscar/16898https://pubs.acs.org/doi/10.1021/acssuschemeng.2c02678Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are ca. 30% stronger and ca. 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30–50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical–mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa no Estado do Rio Grande do Sul (FAPERGS)Processo nº 2021/12071-6, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Processo nº 21/2551-0000603-0, Fundação de Amparo à Pesquisa do Estado do RS (FAPERGS)10303-10310engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarDepartamento de Engenharia de Materiais - DEMaACS Sustainable Chemistry & Engineering600600600600600600600600600Attribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessNonflammable foamsSolid foamsCondensed tanninsCellulose nanofibrilsNonstructural building materialsThermal insulationENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOSNanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1031reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALacssuschemeng.2c02678.pdfacssuschemeng.2c02678.pdfapplication/pdf5724708https://repositorio.ufscar.br/bitstream/ufscar/16898/1/acssuschemeng.2c02678.pdfb88e440ae786347cb47443f7dc6f9a93MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufscar.br/bitstream/ufscar/16898/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52TEXTacssuschemeng.2c02678.pdf.txtacssuschemeng.2c02678.pdf.txtExtracted texttext/plain42990https://repositorio.ufscar.br/bitstream/ufscar/16898/3/acssuschemeng.2c02678.pdf.txta52061be2e65704df1a7f53e8de21f15MD53THUMBNAILacssuschemeng.2c02678.pdf.jpgacssuschemeng.2c02678.pdf.jpgIM Thumbnailimage/jpeg17906https://repositorio.ufscar.br/bitstream/ufscar/16898/4/acssuschemeng.2c02678.pdf.jpg4b014be228599669ebca1cae18ec4a00MD54ufscar/168982023-09-18 18:32:34.419oai:repositorio.ufscar.br:ufscar/16898Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:34Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
title Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
spellingShingle Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
Missio, André Luiz
Nonflammable foams
Solid foams
Condensed tannins
Cellulose nanofibrils
Nonstructural building materials
Thermal insulation
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
Missio, André Luiz
Nonflammable foams
Solid foams
Condensed tannins
Cellulose nanofibrils
Nonstructural building materials
Thermal insulation
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
title_short Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
title_full Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
title_fullStr Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
title_full_unstemmed Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
title_sort Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy
author Missio, André Luiz
author_facet Missio, André Luiz
Missio, André Luiz
Otoni, Caio Gomide
Zhao, Bin
Beaumont, Marco
Khakalo, Alexey
Kämäräinen, Tero
Silva, Silvia Helena Fuentes da
Mattos, Bruno Dufau
Rojas, Orlando José
Otoni, Caio Gomide
Zhao, Bin
Beaumont, Marco
Khakalo, Alexey
Kämäräinen, Tero
Silva, Silvia Helena Fuentes da
Mattos, Bruno Dufau
Rojas, Orlando José
author_role author
author2 Otoni, Caio Gomide
Zhao, Bin
Beaumont, Marco
Khakalo, Alexey
Kämäräinen, Tero
Silva, Silvia Helena Fuentes da
Mattos, Bruno Dufau
Rojas, Orlando José
author2_role author
author
author
author
author
author
author
author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9403804691367376
http://lattes.cnpq.br/6923877786371495
http://lattes.cnpq.br/8821138660917770
dc.contributor.author.fl_str_mv Missio, André Luiz
Otoni, Caio Gomide
Zhao, Bin
Beaumont, Marco
Khakalo, Alexey
Kämäräinen, Tero
Silva, Silvia Helena Fuentes da
Mattos, Bruno Dufau
Rojas, Orlando José
dc.contributor.authorID.fl_str_mv e9775420-012c-4513-983f-50979c40f32b
ea3add03-8f33-4a32-8ed6-ab06d15770b8
42af24a9-42ec-4bb3-92cc-bdd568d9f7df
e71415f8-d4a8-459e-a61e-f597adb9550a
386d1579-f241-44d7-8368-e6ffb077c154
9d84764a-c0df-4d0a-9165-197632b6bbcf
68df5e11-6db0-4def-95f2-931049a102a1
6500504a-64ff-4bb5-a8b4-b1a7e74a4843
78366b42-5952-4069-9eca-0d549ead3b9a
dc.subject.eng.fl_str_mv Nonflammable foams
Solid foams
Condensed tannins
Cellulose nanofibrils
Nonstructural building materials
Thermal insulation
topic Nonflammable foams
Solid foams
Condensed tannins
Cellulose nanofibrils
Nonstructural building materials
Thermal insulation
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
description Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are ca. 30% stronger and ca. 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30–50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical–mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-19T12:52:34Z
dc.date.available.fl_str_mv 2022-10-19T12:52:34Z
dc.date.issued.fl_str_mv 2022-07-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.por.fl_str_mv https://doi.org/10.1021/acssuschemeng.2c02678
dc.identifier.citation.fl_str_mv MISSIO, André Luiz; OTONI, Caio Gomide; ZHAO, Bin; BEAUMONT, Marco; KHAKALO, Alexey; KÄMÄRÄINEN, Tero; SILVA, Silvia Helena Fuentes da; MATTOS, Bruno Dufau; ROJAS, Orlando José. Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy. ACS Sustainable Chemistry & Engineering, v. 10, n. 31, p. 10303-10310, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16898.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16898
dc.identifier.issn.por.fl_str_mv 2168-0485
dc.identifier.url.por.fl_str_mv https://pubs.acs.org/doi/10.1021/acssuschemeng.2c02678
url https://doi.org/10.1021/acssuschemeng.2c02678
https://repositorio.ufscar.br/handle/ufscar/16898
https://pubs.acs.org/doi/10.1021/acssuschemeng.2c02678
identifier_str_mv MISSIO, André Luiz; OTONI, Caio Gomide; ZHAO, Bin; BEAUMONT, Marco; KHAKALO, Alexey; KÄMÄRÄINEN, Tero; SILVA, Silvia Helena Fuentes da; MATTOS, Bruno Dufau; ROJAS, Orlando José. Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy. ACS Sustainable Chemistry & Engineering, v. 10, n. 31, p. 10303-10310, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16898.
2168-0485
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
600
600
600
600
600
600
600
dc.relation.ispartof.por.fl_str_mv ACS Sustainable Chemistry & Engineering
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10303-10310
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.department.fl_str_mv Departamento de Engenharia de Materiais - DEMa
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16898/1/acssuschemeng.2c02678.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16898/2/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16898/3/acssuschemeng.2c02678.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16898/4/acssuschemeng.2c02678.pdf.jpg
bitstream.checksum.fl_str_mv b88e440ae786347cb47443f7dc6f9a93
4d2950bda3d176f570a9f8b328dfbbef
a52061be2e65704df1a7f53e8de21f15
4b014be228599669ebca1cae18ec4a00
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1822245307236220928
dc.identifier.doi.none.fl_str_mv 10.1021/acssuschemeng.2c02678