Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/16324 |
Resumo: | The natural gas reforming routes are consolidated technologies in the production of H2, however, these routes produce significant amounts of greenhouse gases and require the separation and purification of H2. The catalytic decomposition of methane (CDM) process is a promising alternative to traditional processes, as it produces COx-free H2 and carbon nanoparticles (nanotubes, carbon nanofibers or graphene-based structures) with wide applicability. To increase the competitiveness of CDM, it is necessary that the carbon produced has a high commercial value. Thus, the quality control of carbon characteristics is essential, as it is expected that carbon nanostructures free of defects and with uniform characteristics have remarkable mechanical, electronic and magnetic properties. However, the quality control of these carbon nanostructured materials is still very low by this process due to several factors that influence their production. To prepare high quality carbon nanotubes or nanofibers and, at the same time, produce H2 with a high yield, it is necessary to develop active and stable catalysts. In the present research project, catalysts based on Ni and Fe were prepared by the coprecipitation, impregnation and fusion method and tested in the decomposition of CH4. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 physisorption, temperature programmed reduction (TPR), Mössbauer spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy (TEM and SEM). The synthesis method influenced the metal-support interaction, particle size and specific surface area. The catalysts prepared by the coprecipitation and fusion method were more active during the reaction producing fishbone and bamboo carbon nanofibers on Ni and Fe catalysts, respectively. The impregnation method was inefficient in generating nanofibers, promoting the formation of short and irregular fibers. Carbon production was up to 11.8 grams of carbon per gram of iron and 1.4 grams of carbon per gram of nickel for materials prepared by the coprecipitation method. Subsequently, the functionalization of the catalysts used was performed and it was observed that there was an increase in the amount of oxygenated functional groups on the carbon surface, which expands the application and use of these materials. |
id |
SCAR_53f875a3bc0733c59557b09b801b8325 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/16324 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Silva, Juliana Alves daSantos, João Batista Oliveira doshttp://lattes.cnpq.br/0285313473901330Suelves, Isabelhttp://lattes.cnpq.br/96111881689725440a6b3a8e-852e-402d-b84c-2099ca3515aa2022-06-28T12:16:08Z2022-06-28T12:16:08Z2022-04-29SILVA, Juliana Alves da. Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16324.https://repositorio.ufscar.br/handle/ufscar/16324The natural gas reforming routes are consolidated technologies in the production of H2, however, these routes produce significant amounts of greenhouse gases and require the separation and purification of H2. The catalytic decomposition of methane (CDM) process is a promising alternative to traditional processes, as it produces COx-free H2 and carbon nanoparticles (nanotubes, carbon nanofibers or graphene-based structures) with wide applicability. To increase the competitiveness of CDM, it is necessary that the carbon produced has a high commercial value. Thus, the quality control of carbon characteristics is essential, as it is expected that carbon nanostructures free of defects and with uniform characteristics have remarkable mechanical, electronic and magnetic properties. However, the quality control of these carbon nanostructured materials is still very low by this process due to several factors that influence their production. To prepare high quality carbon nanotubes or nanofibers and, at the same time, produce H2 with a high yield, it is necessary to develop active and stable catalysts. In the present research project, catalysts based on Ni and Fe were prepared by the coprecipitation, impregnation and fusion method and tested in the decomposition of CH4. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 physisorption, temperature programmed reduction (TPR), Mössbauer spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy (TEM and SEM). The synthesis method influenced the metal-support interaction, particle size and specific surface area. The catalysts prepared by the coprecipitation and fusion method were more active during the reaction producing fishbone and bamboo carbon nanofibers on Ni and Fe catalysts, respectively. The impregnation method was inefficient in generating nanofibers, promoting the formation of short and irregular fibers. Carbon production was up to 11.8 grams of carbon per gram of iron and 1.4 grams of carbon per gram of nickel for materials prepared by the coprecipitation method. Subsequently, the functionalization of the catalysts used was performed and it was observed that there was an increase in the amount of oxygenated functional groups on the carbon surface, which expands the application and use of these materials.Atualmente, têm-se as rotas de reforma do gás natural como tecnologias consolidadas na produção de H2, entretanto, essas rotas produzem quantidades significativas de gases de efeito estufa e exigem a separação e purificação do H2. O processo de decomposição catalítica do metano (DCM) é uma alternativa promissora aos processos tradicionais, visto que produz H2 livre de COx e nanopartículas de carbono (nanotubos, nanofibras de carbono ou estruturas a base de grafeno) com ampla aplicabilidade. Para aumentar a competividade da DCM em relação as outras rotas, é necessário que o carbono produzido tenha elevado valor comercial. Desta forma, o controle da qualidade das características do carbono se faz imprescindível, pois é esperado que nanoestruturas de carbono livres de defeitos e com características uniformes tenham propriedades mecânicas, eletrônicas e magnéticas notáveis. Entretanto, o controle da qualidade desses materiais nanoestruturados de carbono por esse processo é ainda muito baixo devido a diversos fatores que influenciam sua produção. Para preparar nanotubos ou nanofibras de carbono de alta qualidade e, ao mesmo tempo, produzir H2 com alto rendimento é necessário o desenvolvimento de catalisadores ativos e estáveis. No presente projeto de pesquisa, catalisadores à base de Ni e Fe foram preparados pelo método de coprecipitação, impregnação e fusão e testados na decomposição de CH4. Os materiais foram caracterizados por difração de raios-X (DRX), espectroscopia de Raman, espectroscopia de fotoelétrons excitados por raios-X (XPS), fisissorção de N2, redução a temperatura programada (TPR), espectroscopia Mössbauer, análise termogravimétrica, microscopia eletrônica de transmissão (MET) e de varredura (MEV). O método de síntese influenciou na interação metal-suporte, tamanho de partícula e área superficial específica. Os catalisadores preparados pelo método de coprecipitação e fusão foram mais ativos durante a reação produzindo nanofibras de carbono do tipo “espinha-de-peixe” e “bambu” sob os catalisadores de Ni e Fe, respectivamente. O método de impregnação foi pouco eficiente na geração de nanofibras, promovendo a formação de fibras curtas e irregulares. A produção de carbono foi de até 11,8 gramas de carbono por grama de ferro e 1,4 gramas de carbono por grama de níquel para os materiais preparados pelo método de coprecipitação. Posteriormente, foi realizada a funcionalização dos catalisadores usados e foi observado que houve um aumento na quantidade de grupos funcionais oxigenados na superfície do carbono o que amplia a aplicação e utilização desses materiais.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Processo n. 141308/2018-4, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Código de Financiamento 001 e Processo n. 88887.370237/2019-00, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)Processo n. 2018/01258-5, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDecomposição catalítica do metanoNanofibra de carbonoCatalisadores de Ni-Al e Fe-AlCatalytic decomposition of methaneCarbon nanofiberNi-Al and Fe-Al catalystsENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAProdução de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metanoProduction of carbon-based nanomaterials obtained from the catalytic decomposition of methaneinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600b0f770d9-8ecf-4996-92f4-5cf7c7c04ef0reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16324/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54ORIGINALTese - Juliana Alves da Silva.pdfTese - Juliana Alves da Silva.pdfapplication/pdf5395200https://repositorio.ufscar.br/bitstream/ufscar/16324/1/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf522f420f7e25fd88b2f6985092b649e9MD51Modelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdfModelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdfCarta do orientadorapplication/pdf125093https://repositorio.ufscar.br/bitstream/ufscar/16324/3/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdfcc7d0ae3f11d0fd57fe783e11b94bcbaMD53TEXTTese - Juliana Alves da Silva.pdf.txtTese - Juliana Alves da Silva.pdf.txtExtracted texttext/plain197150https://repositorio.ufscar.br/bitstream/ufscar/16324/5/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.txt21e57fb21b6739b4758a074581eb35afMD55Modelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.txtModelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.txtExtracted texttext/plain1452https://repositorio.ufscar.br/bitstream/ufscar/16324/7/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.txtae19b3c7af2bf8098f7206c4c5af9f14MD57THUMBNAILTese - Juliana Alves da Silva.pdf.jpgTese - Juliana Alves da Silva.pdf.jpgIM Thumbnailimage/jpeg5895https://repositorio.ufscar.br/bitstream/ufscar/16324/6/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.jpgf77f80f62b326fd9b7c3a7725dfb6d11MD56Modelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.jpgModelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.jpgIM Thumbnailimage/jpeg11096https://repositorio.ufscar.br/bitstream/ufscar/16324/8/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.jpg878d76aa1128244dabf68acefb1f1138MD58ufscar/163242023-09-18 18:32:28.412oai:repositorio.ufscar.br:ufscar/16324Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
dc.title.alternative.eng.fl_str_mv |
Production of carbon-based nanomaterials obtained from the catalytic decomposition of methane |
title |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
spellingShingle |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano Silva, Juliana Alves da Decomposição catalítica do metano Nanofibra de carbono Catalisadores de Ni-Al e Fe-Al Catalytic decomposition of methane Carbon nanofiber Ni-Al and Fe-Al catalysts ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
title_short |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
title_full |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
title_fullStr |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
title_full_unstemmed |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
title_sort |
Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano |
author |
Silva, Juliana Alves da |
author_facet |
Silva, Juliana Alves da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/9611188168972544 |
dc.contributor.author.fl_str_mv |
Silva, Juliana Alves da |
dc.contributor.advisor1.fl_str_mv |
Santos, João Batista Oliveira dos |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0285313473901330 |
dc.contributor.advisor-co1.fl_str_mv |
Suelves, Isabel |
dc.contributor.authorID.fl_str_mv |
0a6b3a8e-852e-402d-b84c-2099ca3515aa |
contributor_str_mv |
Santos, João Batista Oliveira dos Suelves, Isabel |
dc.subject.por.fl_str_mv |
Decomposição catalítica do metano Nanofibra de carbono Catalisadores de Ni-Al e Fe-Al |
topic |
Decomposição catalítica do metano Nanofibra de carbono Catalisadores de Ni-Al e Fe-Al Catalytic decomposition of methane Carbon nanofiber Ni-Al and Fe-Al catalysts ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Catalytic decomposition of methane Carbon nanofiber Ni-Al and Fe-Al catalysts |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
description |
The natural gas reforming routes are consolidated technologies in the production of H2, however, these routes produce significant amounts of greenhouse gases and require the separation and purification of H2. The catalytic decomposition of methane (CDM) process is a promising alternative to traditional processes, as it produces COx-free H2 and carbon nanoparticles (nanotubes, carbon nanofibers or graphene-based structures) with wide applicability. To increase the competitiveness of CDM, it is necessary that the carbon produced has a high commercial value. Thus, the quality control of carbon characteristics is essential, as it is expected that carbon nanostructures free of defects and with uniform characteristics have remarkable mechanical, electronic and magnetic properties. However, the quality control of these carbon nanostructured materials is still very low by this process due to several factors that influence their production. To prepare high quality carbon nanotubes or nanofibers and, at the same time, produce H2 with a high yield, it is necessary to develop active and stable catalysts. In the present research project, catalysts based on Ni and Fe were prepared by the coprecipitation, impregnation and fusion method and tested in the decomposition of CH4. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 physisorption, temperature programmed reduction (TPR), Mössbauer spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy (TEM and SEM). The synthesis method influenced the metal-support interaction, particle size and specific surface area. The catalysts prepared by the coprecipitation and fusion method were more active during the reaction producing fishbone and bamboo carbon nanofibers on Ni and Fe catalysts, respectively. The impregnation method was inefficient in generating nanofibers, promoting the formation of short and irregular fibers. Carbon production was up to 11.8 grams of carbon per gram of iron and 1.4 grams of carbon per gram of nickel for materials prepared by the coprecipitation method. Subsequently, the functionalization of the catalysts used was performed and it was observed that there was an increase in the amount of oxygenated functional groups on the carbon surface, which expands the application and use of these materials. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-06-28T12:16:08Z |
dc.date.available.fl_str_mv |
2022-06-28T12:16:08Z |
dc.date.issued.fl_str_mv |
2022-04-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Juliana Alves da. Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16324. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/16324 |
identifier_str_mv |
SILVA, Juliana Alves da. Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16324. |
url |
https://repositorio.ufscar.br/handle/ufscar/16324 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
b0f770d9-8ecf-4996-92f4-5cf7c7c04ef0 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/16324/4/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/16324/1/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf https://repositorio.ufscar.br/bitstream/ufscar/16324/3/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf https://repositorio.ufscar.br/bitstream/ufscar/16324/5/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/16324/7/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/16324/6/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/16324/8/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 522f420f7e25fd88b2f6985092b649e9 cc7d0ae3f11d0fd57fe783e11b94bcba 21e57fb21b6739b4758a074581eb35af ae19b3c7af2bf8098f7206c4c5af9f14 f77f80f62b326fd9b7c3a7725dfb6d11 878d76aa1128244dabf68acefb1f1138 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715649475641344 |