Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano

Detalhes bibliográficos
Autor(a) principal: Silva, Juliana Alves da
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/16324
Resumo: The natural gas reforming routes are consolidated technologies in the production of H2, however, these routes produce significant amounts of greenhouse gases and require the separation and purification of H2. The catalytic decomposition of methane (CDM) process is a promising alternative to traditional processes, as it produces COx-free H2 and carbon nanoparticles (nanotubes, carbon nanofibers or graphene-based structures) with wide applicability. To increase the competitiveness of CDM, it is necessary that the carbon produced has a high commercial value. Thus, the quality control of carbon characteristics is essential, as it is expected that carbon nanostructures free of defects and with uniform characteristics have remarkable mechanical, electronic and magnetic properties. However, the quality control of these carbon nanostructured materials is still very low by this process due to several factors that influence their production. To prepare high quality carbon nanotubes or nanofibers and, at the same time, produce H2 with a high yield, it is necessary to develop active and stable catalysts. In the present research project, catalysts based on Ni and Fe were prepared by the coprecipitation, impregnation and fusion method and tested in the decomposition of CH4. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 physisorption, temperature programmed reduction (TPR), Mössbauer spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy (TEM and SEM). The synthesis method influenced the metal-support interaction, particle size and specific surface area. The catalysts prepared by the coprecipitation and fusion method were more active during the reaction producing fishbone and bamboo carbon nanofibers on Ni and Fe catalysts, respectively. The impregnation method was inefficient in generating nanofibers, promoting the formation of short and irregular fibers. Carbon production was up to 11.8 grams of carbon per gram of iron and 1.4 grams of carbon per gram of nickel for materials prepared by the coprecipitation method. Subsequently, the functionalization of the catalysts used was performed and it was observed that there was an increase in the amount of oxygenated functional groups on the carbon surface, which expands the application and use of these materials.
id SCAR_53f875a3bc0733c59557b09b801b8325
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16324
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Silva, Juliana Alves daSantos, João Batista Oliveira doshttp://lattes.cnpq.br/0285313473901330Suelves, Isabelhttp://lattes.cnpq.br/96111881689725440a6b3a8e-852e-402d-b84c-2099ca3515aa2022-06-28T12:16:08Z2022-06-28T12:16:08Z2022-04-29SILVA, Juliana Alves da. Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16324.https://repositorio.ufscar.br/handle/ufscar/16324The natural gas reforming routes are consolidated technologies in the production of H2, however, these routes produce significant amounts of greenhouse gases and require the separation and purification of H2. The catalytic decomposition of methane (CDM) process is a promising alternative to traditional processes, as it produces COx-free H2 and carbon nanoparticles (nanotubes, carbon nanofibers or graphene-based structures) with wide applicability. To increase the competitiveness of CDM, it is necessary that the carbon produced has a high commercial value. Thus, the quality control of carbon characteristics is essential, as it is expected that carbon nanostructures free of defects and with uniform characteristics have remarkable mechanical, electronic and magnetic properties. However, the quality control of these carbon nanostructured materials is still very low by this process due to several factors that influence their production. To prepare high quality carbon nanotubes or nanofibers and, at the same time, produce H2 with a high yield, it is necessary to develop active and stable catalysts. In the present research project, catalysts based on Ni and Fe were prepared by the coprecipitation, impregnation and fusion method and tested in the decomposition of CH4. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 physisorption, temperature programmed reduction (TPR), Mössbauer spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy (TEM and SEM). The synthesis method influenced the metal-support interaction, particle size and specific surface area. The catalysts prepared by the coprecipitation and fusion method were more active during the reaction producing fishbone and bamboo carbon nanofibers on Ni and Fe catalysts, respectively. The impregnation method was inefficient in generating nanofibers, promoting the formation of short and irregular fibers. Carbon production was up to 11.8 grams of carbon per gram of iron and 1.4 grams of carbon per gram of nickel for materials prepared by the coprecipitation method. Subsequently, the functionalization of the catalysts used was performed and it was observed that there was an increase in the amount of oxygenated functional groups on the carbon surface, which expands the application and use of these materials.Atualmente, têm-se as rotas de reforma do gás natural como tecnologias consolidadas na produção de H2, entretanto, essas rotas produzem quantidades significativas de gases de efeito estufa e exigem a separação e purificação do H2. O processo de decomposição catalítica do metano (DCM) é uma alternativa promissora aos processos tradicionais, visto que produz H2 livre de COx e nanopartículas de carbono (nanotubos, nanofibras de carbono ou estruturas a base de grafeno) com ampla aplicabilidade. Para aumentar a competividade da DCM em relação as outras rotas, é necessário que o carbono produzido tenha elevado valor comercial. Desta forma, o controle da qualidade das características do carbono se faz imprescindível, pois é esperado que nanoestruturas de carbono livres de defeitos e com características uniformes tenham propriedades mecânicas, eletrônicas e magnéticas notáveis. Entretanto, o controle da qualidade desses materiais nanoestruturados de carbono por esse processo é ainda muito baixo devido a diversos fatores que influenciam sua produção. Para preparar nanotubos ou nanofibras de carbono de alta qualidade e, ao mesmo tempo, produzir H2 com alto rendimento é necessário o desenvolvimento de catalisadores ativos e estáveis. No presente projeto de pesquisa, catalisadores à base de Ni e Fe foram preparados pelo método de coprecipitação, impregnação e fusão e testados na decomposição de CH4. Os materiais foram caracterizados por difração de raios-X (DRX), espectroscopia de Raman, espectroscopia de fotoelétrons excitados por raios-X (XPS), fisissorção de N2, redução a temperatura programada (TPR), espectroscopia Mössbauer, análise termogravimétrica, microscopia eletrônica de transmissão (MET) e de varredura (MEV). O método de síntese influenciou na interação metal-suporte, tamanho de partícula e área superficial específica. Os catalisadores preparados pelo método de coprecipitação e fusão foram mais ativos durante a reação produzindo nanofibras de carbono do tipo “espinha-de-peixe” e “bambu” sob os catalisadores de Ni e Fe, respectivamente. O método de impregnação foi pouco eficiente na geração de nanofibras, promovendo a formação de fibras curtas e irregulares. A produção de carbono foi de até 11,8 gramas de carbono por grama de ferro e 1,4 gramas de carbono por grama de níquel para os materiais preparados pelo método de coprecipitação. Posteriormente, foi realizada a funcionalização dos catalisadores usados e foi observado que houve um aumento na quantidade de grupos funcionais oxigenados na superfície do carbono o que amplia a aplicação e utilização desses materiais.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Processo n. 141308/2018-4, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Código de Financiamento 001 e Processo n. 88887.370237/2019-00, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)Processo n. 2018/01258-5, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDecomposição catalítica do metanoNanofibra de carbonoCatalisadores de Ni-Al e Fe-AlCatalytic decomposition of methaneCarbon nanofiberNi-Al and Fe-Al catalystsENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAProdução de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metanoProduction of carbon-based nanomaterials obtained from the catalytic decomposition of methaneinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600b0f770d9-8ecf-4996-92f4-5cf7c7c04ef0reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16324/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54ORIGINALTese - Juliana Alves da Silva.pdfTese - Juliana Alves da Silva.pdfapplication/pdf5395200https://repositorio.ufscar.br/bitstream/ufscar/16324/1/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf522f420f7e25fd88b2f6985092b649e9MD51Modelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdfModelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdfCarta do orientadorapplication/pdf125093https://repositorio.ufscar.br/bitstream/ufscar/16324/3/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdfcc7d0ae3f11d0fd57fe783e11b94bcbaMD53TEXTTese - Juliana Alves da Silva.pdf.txtTese - Juliana Alves da Silva.pdf.txtExtracted texttext/plain197150https://repositorio.ufscar.br/bitstream/ufscar/16324/5/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.txt21e57fb21b6739b4758a074581eb35afMD55Modelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.txtModelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.txtExtracted texttext/plain1452https://repositorio.ufscar.br/bitstream/ufscar/16324/7/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.txtae19b3c7af2bf8098f7206c4c5af9f14MD57THUMBNAILTese - Juliana Alves da Silva.pdf.jpgTese - Juliana Alves da Silva.pdf.jpgIM Thumbnailimage/jpeg5895https://repositorio.ufscar.br/bitstream/ufscar/16324/6/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.jpgf77f80f62b326fd9b7c3a7725dfb6d11MD56Modelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.jpgModelo_Carta_Comprovante_Versao_Final_MS-DR_(1)_assinado.pdf.jpgIM Thumbnailimage/jpeg11096https://repositorio.ufscar.br/bitstream/ufscar/16324/8/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.jpg878d76aa1128244dabf68acefb1f1138MD58ufscar/163242023-09-18 18:32:28.412oai:repositorio.ufscar.br:ufscar/16324Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
dc.title.alternative.eng.fl_str_mv Production of carbon-based nanomaterials obtained from the catalytic decomposition of methane
title Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
spellingShingle Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
Silva, Juliana Alves da
Decomposição catalítica do metano
Nanofibra de carbono
Catalisadores de Ni-Al e Fe-Al
Catalytic decomposition of methane
Carbon nanofiber
Ni-Al and Fe-Al catalysts
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
title_short Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
title_full Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
title_fullStr Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
title_full_unstemmed Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
title_sort Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano
author Silva, Juliana Alves da
author_facet Silva, Juliana Alves da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9611188168972544
dc.contributor.author.fl_str_mv Silva, Juliana Alves da
dc.contributor.advisor1.fl_str_mv Santos, João Batista Oliveira dos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0285313473901330
dc.contributor.advisor-co1.fl_str_mv Suelves, Isabel
dc.contributor.authorID.fl_str_mv 0a6b3a8e-852e-402d-b84c-2099ca3515aa
contributor_str_mv Santos, João Batista Oliveira dos
Suelves, Isabel
dc.subject.por.fl_str_mv Decomposição catalítica do metano
Nanofibra de carbono
Catalisadores de Ni-Al e Fe-Al
topic Decomposição catalítica do metano
Nanofibra de carbono
Catalisadores de Ni-Al e Fe-Al
Catalytic decomposition of methane
Carbon nanofiber
Ni-Al and Fe-Al catalysts
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Catalytic decomposition of methane
Carbon nanofiber
Ni-Al and Fe-Al catalysts
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
description The natural gas reforming routes are consolidated technologies in the production of H2, however, these routes produce significant amounts of greenhouse gases and require the separation and purification of H2. The catalytic decomposition of methane (CDM) process is a promising alternative to traditional processes, as it produces COx-free H2 and carbon nanoparticles (nanotubes, carbon nanofibers or graphene-based structures) with wide applicability. To increase the competitiveness of CDM, it is necessary that the carbon produced has a high commercial value. Thus, the quality control of carbon characteristics is essential, as it is expected that carbon nanostructures free of defects and with uniform characteristics have remarkable mechanical, electronic and magnetic properties. However, the quality control of these carbon nanostructured materials is still very low by this process due to several factors that influence their production. To prepare high quality carbon nanotubes or nanofibers and, at the same time, produce H2 with a high yield, it is necessary to develop active and stable catalysts. In the present research project, catalysts based on Ni and Fe were prepared by the coprecipitation, impregnation and fusion method and tested in the decomposition of CH4. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 physisorption, temperature programmed reduction (TPR), Mössbauer spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy (TEM and SEM). The synthesis method influenced the metal-support interaction, particle size and specific surface area. The catalysts prepared by the coprecipitation and fusion method were more active during the reaction producing fishbone and bamboo carbon nanofibers on Ni and Fe catalysts, respectively. The impregnation method was inefficient in generating nanofibers, promoting the formation of short and irregular fibers. Carbon production was up to 11.8 grams of carbon per gram of iron and 1.4 grams of carbon per gram of nickel for materials prepared by the coprecipitation method. Subsequently, the functionalization of the catalysts used was performed and it was observed that there was an increase in the amount of oxygenated functional groups on the carbon surface, which expands the application and use of these materials.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-06-28T12:16:08Z
dc.date.available.fl_str_mv 2022-06-28T12:16:08Z
dc.date.issued.fl_str_mv 2022-04-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Juliana Alves da. Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16324.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16324
identifier_str_mv SILVA, Juliana Alves da. Produção de nanomateriais a base de carbono obtidos a partir da decomposição catalítica de metano. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16324.
url https://repositorio.ufscar.br/handle/ufscar/16324
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv b0f770d9-8ecf-4996-92f4-5cf7c7c04ef0
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16324/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16324/1/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16324/3/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16324/5/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16324/7/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16324/6/Tese%20-%20Juliana%20Alves%20da%20Silva.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/16324/8/Modelo_Carta_Comprovante_Versao_Final_MS-DR_%281%29_assinado.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
522f420f7e25fd88b2f6985092b649e9
cc7d0ae3f11d0fd57fe783e11b94bcba
21e57fb21b6739b4758a074581eb35af
ae19b3c7af2bf8098f7206c4c5af9f14
f77f80f62b326fd9b7c3a7725dfb6d11
878d76aa1128244dabf68acefb1f1138
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136408394039296