Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices

Detalhes bibliográficos
Autor(a) principal: Miranda, Letícia Passos
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/14218
Resumo: The enzymatic production of biodiesel is a promising alternative to the conventional production by the alkaline route in a homogeneous medium. The enzymatic process allows using raw material with any concentration of free fatty acids due to the specificity of the lipases and lower energy consumption, because the enzymes act at mild temperature conditions. The liquid formulations of lipase from Thermomyces lanuginosus, Eversa® Transform and Eversa® Transform 2.0, were launched by Novozymes A/S to be used in the biodiesel production in their free forms. After characterizing the two formulations, it was identified that both are very similar, differing in the greater thermal stability of the second formulation, which is used to give segment to this work. The immobilization of enzymes can improve theior performance in the production of biodiesel, in addition to enabling the recovery and reuse of the biocatalyst. In this work, Eversa lipase was immobilized by the technique of cross-linked enzyme aggregates (CLEAs), a simple, economical and unsupported technique, capable of generating insoluble biocatalysts with high volumetric activity and improved stability. The preparation conditions were optimized in order to improve the properties of the biocatalyst. The nature of the precipitant and concentration of the crosslinking agent were evaluated. To improve the crosslinking step, bovine serum albumin (BSA), soy protein (SP) or polyethyleneimine (PEI) were co-precipitated and evaluated as co-feeders and additives. Starch (later enzymatically degraded) was used as a porogenic agent to reduce the diffusion limitations of the substrate. Magnetic silica nanoparticles functionalized with amino-octyl groups (MNPS) were also used to simplify the handling of CLEA, which are incorporated into the CLEAs by inter and/or intra crosslinks particle-enzyme with glutaraldehyde as bifunctional agent, but a great percentage of enzyme could also to be adsorbed on the nanoparticle surface before the aggregation step. The best CLEA was prepared using PEI, starch and MNPS (Eversa m-CLEA). Under these conditions, the biocatalyst showed an immobilization yield of 98.9%, recovered activity of 30.1%, a porous structure, and a thermal stability at 70°C around 40-fold higher than that of the free enzyme. In the transesterification reaction of refined soybean oil with anhydrous ethanol (molar ratio oil/ethanol 1:6), the best performance obtained was using 12 Uest/oil of Eversa m- CLEA at 40ºC. A mass yield of 89.8% of fatty acid ethyl esters (FAEE) was found after 12 h of reaction, while the soluble enzyme required 48 h of reaction to give the same yield. A caustic polishing step of the product yielded a biodiesel containing 98.9 wt.% of FAEEs and a content of free fatty acids (FFAs) below 0.25 wt.%, meeting the international standards of a biodiesel to be commercialized as biofuel. The immobilized biocatalyst could be reused for at least five cycles of 12 h, maintaining 89.6% of the first-cycle mass yield, showing the efficient recovery of the catalyst by applying an external magnetic field. From an experimental design (DCCR)23 , it was possible to define a range of optimized values to produce enzymatic biodiesel using also Eversa m-CLEA, however in the transesterification of raw materials oil, degummed soy oil, and hydrated ethanol. At a molar ratio oil/ethanol of 1:6, 4 Uest/oil at 40 ºC, a mass yield of 81.45 wt.% of FAEEs, with a FFAs content of 3.9 wt.% was obtained after 24h of reaction. After a caustic polishing, a yield of 89.88 wt.% of FAEEs with a FFAs content of 0.17 wt.% was obtained. The use of Eversa m-CLEA, a biocatalyst that is easy to recover and reuse, together with unrefined raw materials with lower added value, is a promising combination to contribute to the economic viability of the enzymatic route, aiming to make it competitive to the traditional alkaline route.
id SCAR_5840334c7fbcb4ee0856b7d251c03b83
oai_identifier_str oai:repositorio.ufscar.br:ufscar/14218
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Miranda, Letícia PassosTardioli, Paulo Waldirhttp://lattes.cnpq.br/0808991927126468http://lattes.cnpq.br/61089027226813896070f3b4-6583-4b08-9523-9f5b4847e0302021-05-04T11:02:52Z2021-05-04T11:02:52Z2020-10-30MIRANDA, Letícia Passos. Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14218.https://repositorio.ufscar.br/handle/ufscar/14218The enzymatic production of biodiesel is a promising alternative to the conventional production by the alkaline route in a homogeneous medium. The enzymatic process allows using raw material with any concentration of free fatty acids due to the specificity of the lipases and lower energy consumption, because the enzymes act at mild temperature conditions. The liquid formulations of lipase from Thermomyces lanuginosus, Eversa® Transform and Eversa® Transform 2.0, were launched by Novozymes A/S to be used in the biodiesel production in their free forms. After characterizing the two formulations, it was identified that both are very similar, differing in the greater thermal stability of the second formulation, which is used to give segment to this work. The immobilization of enzymes can improve theior performance in the production of biodiesel, in addition to enabling the recovery and reuse of the biocatalyst. In this work, Eversa lipase was immobilized by the technique of cross-linked enzyme aggregates (CLEAs), a simple, economical and unsupported technique, capable of generating insoluble biocatalysts with high volumetric activity and improved stability. The preparation conditions were optimized in order to improve the properties of the biocatalyst. The nature of the precipitant and concentration of the crosslinking agent were evaluated. To improve the crosslinking step, bovine serum albumin (BSA), soy protein (SP) or polyethyleneimine (PEI) were co-precipitated and evaluated as co-feeders and additives. Starch (later enzymatically degraded) was used as a porogenic agent to reduce the diffusion limitations of the substrate. Magnetic silica nanoparticles functionalized with amino-octyl groups (MNPS) were also used to simplify the handling of CLEA, which are incorporated into the CLEAs by inter and/or intra crosslinks particle-enzyme with glutaraldehyde as bifunctional agent, but a great percentage of enzyme could also to be adsorbed on the nanoparticle surface before the aggregation step. The best CLEA was prepared using PEI, starch and MNPS (Eversa m-CLEA). Under these conditions, the biocatalyst showed an immobilization yield of 98.9%, recovered activity of 30.1%, a porous structure, and a thermal stability at 70°C around 40-fold higher than that of the free enzyme. In the transesterification reaction of refined soybean oil with anhydrous ethanol (molar ratio oil/ethanol 1:6), the best performance obtained was using 12 Uest/oil of Eversa m- CLEA at 40ºC. A mass yield of 89.8% of fatty acid ethyl esters (FAEE) was found after 12 h of reaction, while the soluble enzyme required 48 h of reaction to give the same yield. A caustic polishing step of the product yielded a biodiesel containing 98.9 wt.% of FAEEs and a content of free fatty acids (FFAs) below 0.25 wt.%, meeting the international standards of a biodiesel to be commercialized as biofuel. The immobilized biocatalyst could be reused for at least five cycles of 12 h, maintaining 89.6% of the first-cycle mass yield, showing the efficient recovery of the catalyst by applying an external magnetic field. From an experimental design (DCCR)23 , it was possible to define a range of optimized values to produce enzymatic biodiesel using also Eversa m-CLEA, however in the transesterification of raw materials oil, degummed soy oil, and hydrated ethanol. At a molar ratio oil/ethanol of 1:6, 4 Uest/oil at 40 ºC, a mass yield of 81.45 wt.% of FAEEs, with a FFAs content of 3.9 wt.% was obtained after 24h of reaction. After a caustic polishing, a yield of 89.88 wt.% of FAEEs with a FFAs content of 0.17 wt.% was obtained. The use of Eversa m-CLEA, a biocatalyst that is easy to recover and reuse, together with unrefined raw materials with lower added value, is a promising combination to contribute to the economic viability of the enzymatic route, aiming to make it competitive to the traditional alkaline route.A produção enzimática de biodiesel é uma alternativa promissora à produção convencional pela rota alcalina em meio homogêneo. O processo enzimático permite a utilização de matéria-prima com qualquer concentração de ácidos graxos livres devido à especificidade das lipases e ao menor consumo de energia, pelo fato das enzimas atuarem em condições suaves de temperatura. As formulações líquidas de lipase de Thermomyces lanuginosus, Eversa® Transform e Eversa® Transform 2.0 foram lançadas pela Novozymes A/S para serem usadas produção de biodiesel na sua forma livre. Após a caraterização das duas formulações, foi identificado que ambas são muito semelhantes, diferindo-se na maior estabilidade térmica da segunda formulação, sendo esta utilizada para dar segmento a este trabalho. A imobilização de enzimas pode melhorar seu desempenho na produção do biodiesel, além de viabilizar a recuperação e reuso do biocatalisador. Neste trabalho, a lipase presente na formulação de Eversa foi imobilizada pela técnica de agregados enzimáticos reticulados (CLEAs), uma técnica simples, econômica e sem suporte, capaz de gerar biocatalisadores insolúveis com alta atividade volumétrica e estabilidade aprimorada. As condições de preparo foram aprimoradas a fim de melhorar as propriedades do biocatalisador. Foram avaliados a natureza do precipitante e concentração do agente reticulante. Para melhorar a etapa de reticulação, albumina de soro bovino (BSA), proteína de soja (PS) ou polietilenoimina (PEI) foram coprecipitados e avaliados como aditivos. O amido (posteriormente degradado enzimaticamente) foi utilizado como um agente porogênico para diminuir as limitações de difusão do substrato. Nanopartículas magnéticas de sílica funcionalizadas com grupos aminos e octilas (NPMSs) também foram utilizadas para simplificar o manuseio dos CLEAs, as quais são incorporadas aos CLEAs por ligações inter e intra partícula-enzima com glutaraldeído com reagente bifuncional, mas também, uma porcentagem da enzima é adsorvida às nanopartículas antes da agregação. O melhor CLEA foi preparado com PEI, amido e NPMSs (Eversa m-CLEA). Nestas condições, obteve-se um biocatalisador com rendimento de imobilização de 98,9%, atividade recuperada de 30,1%, estrutura porosa e com uma estabilidade térmica a 70 °C 40 vezes superior à da enzima livre. Na reação de transesterificação de óleo de soja refinado com etanol anidro (razão molar óleo/etanol 1:6), o melhor desempenho obtido foi empregando 12 Uest/góleo de Eversa m-CLEA à 40ºC. Um rendimento mássico de 89,8% de ésteres etílicos de ácidos graxos (EEAGs) foi encontrado após 12 h de reação, enquanto a enzima solúvel necessitou de 48 h de reação para dar o mesmo rendimento. Uma etapa de polimento cáustico do produto rendeu um biodiesel contendo 98,9% (m/m) de EEAGs e um teor de ácidos graxos livres (AGLs) inferior a 0,25% (m/m), atendendo aos padrões internacionais para que o biodiesel possa ser comercializado como biocombustível. O biocatalisador imobilizado pode ser reutilizado por pelo menos cinco ciclos de 12 h, mantendo 89,6% do rendimento do primeiro ciclo, mostrando a recuperação eficiente do catalisador pela aplicação de um campo magnético externo. A partir de um delineamento experimental (DCCR)23, foi-se capaz de definir uma faixa de valores otimizados para a produção do biodiesel enzimático usando também o Eversa m-CLEA, porém na transesterificação de matérias-primas não refinadas, o óleo de soja degomado e etanol hidratado. A uma razão molar óleo/etanol 1:6, 4 Uest/góleo, a 40ºC, foi obtido um rendimento mássico de 81,45% de EEAGs, com um teor de AGLs de 3,9% após 24 h de reação. Após o polimento cáustico obteve-se um rendimento mássico de 89,88% de EEAGs, e um teor de AGLs de 0,17% (m/m). A utilização do Eversa m-CLEA, um biocatalisador de fácil recuperação e reuso, juntamente com matérias-primas não refinadas, de menor valor agregado, é uma combinação promissora que visa contribuir com a viabilidade econômica da rota enzimática na busca de torná-la competitiva em relação a rota alcalina tradicionalmente usada.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CAPES: código de financiamento - 001CNPQ: projetos 405889/2016-0 e 308212/2017-7FAPESP: 2016/10636-8porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessLipasesEversaCleas magnéticosImobilizaçãoEtanóliseBiodieselMagnetic cleasImmobilizationEthanolysisENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICACompósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórticesCrosslinked composites of Eversa® Transform and magnetic nanoparticles as biocatalysts for the synthesis of biodiesel in a vortex flow reactorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis60060057a91b28-06b2-4fc7-b127-2a5005569c49reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Letícia Passos Miranda_UFSCar_Final_LPM.pdfTese_Letícia Passos Miranda_UFSCar_Final_LPM.pdfVersão Final Teseapplication/pdf1611772https://repositorio.ufscar.br/bitstream/ufscar/14218/1/Tese_Let%c3%adcia%20Passos%20Miranda_UFSCar_Final_LPM.pdfda8cc961841d08dfc9280aaf1c38a5f3MD51Carta comprovante orientador_LetíciaPM.pdfCarta comprovante orientador_LetíciaPM.pdfCarta comprovante orientadorapplication/pdf250805https://repositorio.ufscar.br/bitstream/ufscar/14218/3/Carta%20comprovante%20orientador_Let%c3%adciaPM.pdf78f9acd4cec85ad54ce83336a76bf6a3MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/14218/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTese_Letícia Passos Miranda_UFSCar_Final_LPM.pdf.txtTese_Letícia Passos Miranda_UFSCar_Final_LPM.pdf.txtExtracted texttext/plain243378https://repositorio.ufscar.br/bitstream/ufscar/14218/5/Tese_Let%c3%adcia%20Passos%20Miranda_UFSCar_Final_LPM.pdf.txt5f6220ddab4ca8cb64a6c1ed02a77243MD55Carta comprovante orientador_LetíciaPM.pdf.txtCarta comprovante orientador_LetíciaPM.pdf.txtExtracted texttext/plain1294https://repositorio.ufscar.br/bitstream/ufscar/14218/7/Carta%20comprovante%20orientador_Let%c3%adciaPM.pdf.txt1d6ae4248b6b9319c60a70c6b1bb9d59MD57THUMBNAILTese_Letícia Passos Miranda_UFSCar_Final_LPM.pdf.jpgTese_Letícia Passos Miranda_UFSCar_Final_LPM.pdf.jpgIM Thumbnailimage/jpeg7629https://repositorio.ufscar.br/bitstream/ufscar/14218/6/Tese_Let%c3%adcia%20Passos%20Miranda_UFSCar_Final_LPM.pdf.jpgacd6ebabaec7f25318d7960c5bec0e0bMD56Carta comprovante orientador_LetíciaPM.pdf.jpgCarta comprovante orientador_LetíciaPM.pdf.jpgIM Thumbnailimage/jpeg6192https://repositorio.ufscar.br/bitstream/ufscar/14218/8/Carta%20comprovante%20orientador_Let%c3%adciaPM.pdf.jpg54f2748faf06321b0268141bdefe2b08MD58ufscar/142182023-09-18 18:32:10.291oai:repositorio.ufscar.br:ufscar/14218Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:10Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
dc.title.alternative.eng.fl_str_mv Crosslinked composites of Eversa® Transform and magnetic nanoparticles as biocatalysts for the synthesis of biodiesel in a vortex flow reactor
title Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
spellingShingle Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
Miranda, Letícia Passos
Lipases
Eversa
Cleas magnéticos
Imobilização
Etanólise
Biodiesel
Magnetic cleas
Immobilization
Ethanolysis
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
title_short Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
title_full Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
title_fullStr Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
title_full_unstemmed Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
title_sort Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices
author Miranda, Letícia Passos
author_facet Miranda, Letícia Passos
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6108902722681389
dc.contributor.author.fl_str_mv Miranda, Letícia Passos
dc.contributor.advisor1.fl_str_mv Tardioli, Paulo Waldir
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0808991927126468
dc.contributor.authorID.fl_str_mv 6070f3b4-6583-4b08-9523-9f5b4847e030
contributor_str_mv Tardioli, Paulo Waldir
dc.subject.por.fl_str_mv Lipases
Eversa
Cleas magnéticos
Imobilização
Etanólise
Biodiesel
topic Lipases
Eversa
Cleas magnéticos
Imobilização
Etanólise
Biodiesel
Magnetic cleas
Immobilization
Ethanolysis
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Magnetic cleas
Immobilization
Ethanolysis
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
description The enzymatic production of biodiesel is a promising alternative to the conventional production by the alkaline route in a homogeneous medium. The enzymatic process allows using raw material with any concentration of free fatty acids due to the specificity of the lipases and lower energy consumption, because the enzymes act at mild temperature conditions. The liquid formulations of lipase from Thermomyces lanuginosus, Eversa® Transform and Eversa® Transform 2.0, were launched by Novozymes A/S to be used in the biodiesel production in their free forms. After characterizing the two formulations, it was identified that both are very similar, differing in the greater thermal stability of the second formulation, which is used to give segment to this work. The immobilization of enzymes can improve theior performance in the production of biodiesel, in addition to enabling the recovery and reuse of the biocatalyst. In this work, Eversa lipase was immobilized by the technique of cross-linked enzyme aggregates (CLEAs), a simple, economical and unsupported technique, capable of generating insoluble biocatalysts with high volumetric activity and improved stability. The preparation conditions were optimized in order to improve the properties of the biocatalyst. The nature of the precipitant and concentration of the crosslinking agent were evaluated. To improve the crosslinking step, bovine serum albumin (BSA), soy protein (SP) or polyethyleneimine (PEI) were co-precipitated and evaluated as co-feeders and additives. Starch (later enzymatically degraded) was used as a porogenic agent to reduce the diffusion limitations of the substrate. Magnetic silica nanoparticles functionalized with amino-octyl groups (MNPS) were also used to simplify the handling of CLEA, which are incorporated into the CLEAs by inter and/or intra crosslinks particle-enzyme with glutaraldehyde as bifunctional agent, but a great percentage of enzyme could also to be adsorbed on the nanoparticle surface before the aggregation step. The best CLEA was prepared using PEI, starch and MNPS (Eversa m-CLEA). Under these conditions, the biocatalyst showed an immobilization yield of 98.9%, recovered activity of 30.1%, a porous structure, and a thermal stability at 70°C around 40-fold higher than that of the free enzyme. In the transesterification reaction of refined soybean oil with anhydrous ethanol (molar ratio oil/ethanol 1:6), the best performance obtained was using 12 Uest/oil of Eversa m- CLEA at 40ºC. A mass yield of 89.8% of fatty acid ethyl esters (FAEE) was found after 12 h of reaction, while the soluble enzyme required 48 h of reaction to give the same yield. A caustic polishing step of the product yielded a biodiesel containing 98.9 wt.% of FAEEs and a content of free fatty acids (FFAs) below 0.25 wt.%, meeting the international standards of a biodiesel to be commercialized as biofuel. The immobilized biocatalyst could be reused for at least five cycles of 12 h, maintaining 89.6% of the first-cycle mass yield, showing the efficient recovery of the catalyst by applying an external magnetic field. From an experimental design (DCCR)23 , it was possible to define a range of optimized values to produce enzymatic biodiesel using also Eversa m-CLEA, however in the transesterification of raw materials oil, degummed soy oil, and hydrated ethanol. At a molar ratio oil/ethanol of 1:6, 4 Uest/oil at 40 ºC, a mass yield of 81.45 wt.% of FAEEs, with a FFAs content of 3.9 wt.% was obtained after 24h of reaction. After a caustic polishing, a yield of 89.88 wt.% of FAEEs with a FFAs content of 0.17 wt.% was obtained. The use of Eversa m-CLEA, a biocatalyst that is easy to recover and reuse, together with unrefined raw materials with lower added value, is a promising combination to contribute to the economic viability of the enzymatic route, aiming to make it competitive to the traditional alkaline route.
publishDate 2020
dc.date.issued.fl_str_mv 2020-10-30
dc.date.accessioned.fl_str_mv 2021-05-04T11:02:52Z
dc.date.available.fl_str_mv 2021-05-04T11:02:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MIRANDA, Letícia Passos. Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14218.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/14218
identifier_str_mv MIRANDA, Letícia Passos. Compósitos reticulados de Eversa® Transform e nanopartículas magnéticas como biocatalisadores para a síntese de biodiesel em reator de fluxo em vórtices. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14218.
url https://repositorio.ufscar.br/handle/ufscar/14218
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 57a91b28-06b2-4fc7-b127-2a5005569c49
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/14218/1/Tese_Let%c3%adcia%20Passos%20Miranda_UFSCar_Final_LPM.pdf
https://repositorio.ufscar.br/bitstream/ufscar/14218/3/Carta%20comprovante%20orientador_Let%c3%adciaPM.pdf
https://repositorio.ufscar.br/bitstream/ufscar/14218/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/14218/5/Tese_Let%c3%adcia%20Passos%20Miranda_UFSCar_Final_LPM.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/14218/7/Carta%20comprovante%20orientador_Let%c3%adciaPM.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/14218/6/Tese_Let%c3%adcia%20Passos%20Miranda_UFSCar_Final_LPM.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/14218/8/Carta%20comprovante%20orientador_Let%c3%adciaPM.pdf.jpg
bitstream.checksum.fl_str_mv da8cc961841d08dfc9280aaf1c38a5f3
78f9acd4cec85ad54ce83336a76bf6a3
e39d27027a6cc9cb039ad269a5db8e34
5f6220ddab4ca8cb64a6c1ed02a77243
1d6ae4248b6b9319c60a70c6b1bb9d59
acd6ebabaec7f25318d7960c5bec0e0b
54f2748faf06321b0268141bdefe2b08
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136389781815296