Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/13137 |
Resumo: | Over the last few years, many researchers have directed their efforts and interests toward in vivo studies of the cellular and molecular mechanisms in the microcirculation of many tissues under different inflammatory conditions. These studies’ main goal is to develop more effective therapeutic strategies for the treatment of inflammatory and autoimmune diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy (IVM) technique, this procedure usually requires an expert to perform visual analysis, which is prone to the inter- and intra-observer variability, besides being a tedious and time-consuming task. This problem claims, therefore, an automated method to detect and track these cells. To this end, this work aims to study and develop computational techniques for the detection and tracking of leukocytes in IVM images. We proposed an automatic computational pipeline where, after a preprocessing stage, we combined the results of frame-basis detection (2D – spatial processing) with those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumetric images formed by stacking all the video frames. While the 2D processing focuses on leukocytes detection without worrying about their tracking, 2D+t processing was intended to assist in the dynamic analysis of cell movement (tracking). We tested three different detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and DCNN. Our results were obtained by qualitative and quantitative evaluations performed over six different IVM videos, where the detected cells were compared with the manual annotations of an expert. They showed the combination of these both processing stages minimized most of the problems involved in IVM cell detection and tracking, such as cell occlusion and the proper discrimination of cell trajectories. |
id |
SCAR_58945b942ccfb799f460b13700550270 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/13137 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Silva, Bruno César Gregório daFerrari, Ricardo Joséhttp://lattes.cnpq.br/8460861175344306http://lattes.cnpq.br/296668810636037567c32dd3-a7c6-4f5e-8ffb-8e665099c0c12020-08-10T15:35:15Z2020-08-10T15:35:15Z2020-03-30SILVA, Bruno César Gregório da. Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13137.https://repositorio.ufscar.br/handle/ufscar/13137Over the last few years, many researchers have directed their efforts and interests toward in vivo studies of the cellular and molecular mechanisms in the microcirculation of many tissues under different inflammatory conditions. These studies’ main goal is to develop more effective therapeutic strategies for the treatment of inflammatory and autoimmune diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy (IVM) technique, this procedure usually requires an expert to perform visual analysis, which is prone to the inter- and intra-observer variability, besides being a tedious and time-consuming task. This problem claims, therefore, an automated method to detect and track these cells. To this end, this work aims to study and develop computational techniques for the detection and tracking of leukocytes in IVM images. We proposed an automatic computational pipeline where, after a preprocessing stage, we combined the results of frame-basis detection (2D – spatial processing) with those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumetric images formed by stacking all the video frames. While the 2D processing focuses on leukocytes detection without worrying about their tracking, 2D+t processing was intended to assist in the dynamic analysis of cell movement (tracking). We tested three different detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and DCNN. Our results were obtained by qualitative and quantitative evaluations performed over six different IVM videos, where the detected cells were compared with the manual annotations of an expert. They showed the combination of these both processing stages minimized most of the problems involved in IVM cell detection and tracking, such as cell occlusion and the proper discrimination of cell trajectories.Nos últimos anos, um grande número de pesquisadores tem direcionado seus esforços e interesses para estudos in vivo dos mecanismos celulares e moleculares na microcirculação de vários tecidos e em várias condições inflamatórias. O principal objetivo desses estudos é desenvolver estratégias terapêuticas mais eficazes para o tratamento de doenças inflamatórias e autoimunes. A análise do recrutamento leucocitário é um passo importante para entender as interações entre os leucócitos e as células endoteliais na microcirculação de animais vivos. Realizado preferencialmente através da técnica de microscopia intravital (MI), esse procedimento geralmente requer a análise visual de um especialista, que é propensa à intra- e inter-variabilidade do observador, além de ser uma atividade tediosa e demorada. Tal problema reivindica, portanto, um método automatizado para a detecção e rastreamento dessas células. Para tanto, este trabalho visa o estudo e o desenvolvimento de técnicas computacionais para a detecção e rastreamento de leucócitos em imagens de MI. Para isso, propusemos um arcabouço de desenvolvimento computacional automático que, após uma etapa de pré-processamento, combina os resultados da detecção quadro-a-quadro do vídeo (processamento espacial – 2D) com os resultados de uma análise tridimensional (processamento espaço-temporal – 3D=2D+t) feita em imagens volumétricas formadas pelo empilhamento de todos os quadros do vídeo. Neste caso, enquanto o processamento 2D visa a detecção dos leucócitos sem se preocupar com a tarefa de rastreamento, o processamento 2D+t tem o objetivo de auxiliar na análise da dinâmica celular (rastreamento). Nós testamos três abordagens diferentes para o processamento espacial, denominadas MTM-PCA, MTM-DCNN e DCNN. Nossos resultados foram obtidos por meio de avaliações qualitativas e quantitativas realizadas em seis diferentes vídeos de MI, em que as células detectadas foram comparadas com as marcações manuais de um especialista. Esses resultados mostraram que a combinação das duas etapas de processamento foi capaz de minimizar a maioria dos problemas envolvidos na detecção e rastreamento celular em imagens de MI, como a oclusão e a discriminação adequada das trajetórias das células.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001CAPES: 88881.187616/2018-01engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDetecção de célulasRastreamento de célulasMicroscopia intravitalAnálise espaço-temporalRecrutamento leucocitárioCell detectionCell trackingIntravital video microscopySpatiotemporal analysisLeukocyte recruitmentCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOAutomated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image featuresAnálise automática do recrutamento leucocitário em estudos in vivo utilizando uma abordagem espaço-temporal e múltiplos atributos de imageminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6008f7fc1dc-47c2-49ef-ac95-2844e18660a3reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALPhD_Thesis_BrunoGregorio.pdfPhD_Thesis_BrunoGregorio.pdfTese de Doutorado - Bruno Gregórioapplication/pdf33179657https://repositorio.ufscar.br/bitstream/ufscar/13137/1/PhD_Thesis_BrunoGregorio.pdf738e3dad74da47d572892abec12b6e88MD51PPGCC_Template_dec_BCO.pdfPPGCC_Template_dec_BCO.pdfCarta comprovante de autorizaçãoapplication/pdf701888https://repositorio.ufscar.br/bitstream/ufscar/13137/2/PPGCC_Template_dec_BCO.pdfaf8ef4522b07e454fe078618d3e9ae25MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/13137/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTPhD_Thesis_BrunoGregorio.pdf.txtPhD_Thesis_BrunoGregorio.pdf.txtExtracted texttext/plain371835https://repositorio.ufscar.br/bitstream/ufscar/13137/4/PhD_Thesis_BrunoGregorio.pdf.txtd863b0ef084192dcbc923fc29a961d24MD54PPGCC_Template_dec_BCO.pdf.txtPPGCC_Template_dec_BCO.pdf.txtExtracted texttext/plain1695https://repositorio.ufscar.br/bitstream/ufscar/13137/6/PPGCC_Template_dec_BCO.pdf.txt72f2ed0c97d98d4566e3d7ed41bd92e1MD56THUMBNAILPhD_Thesis_BrunoGregorio.pdf.jpgPhD_Thesis_BrunoGregorio.pdf.jpgIM Thumbnailimage/jpeg9890https://repositorio.ufscar.br/bitstream/ufscar/13137/5/PhD_Thesis_BrunoGregorio.pdf.jpgd7df52cada8ecd3209394cb91f5efa90MD55PPGCC_Template_dec_BCO.pdf.jpgPPGCC_Template_dec_BCO.pdf.jpgIM Thumbnailimage/jpeg12729https://repositorio.ufscar.br/bitstream/ufscar/13137/7/PPGCC_Template_dec_BCO.pdf.jpg3d1d1a29878f63342256526c627e0774MD57ufscar/131372023-09-18 18:31:59.619oai:repositorio.ufscar.br:ufscar/13137Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:59Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
dc.title.alternative.por.fl_str_mv |
Análise automática do recrutamento leucocitário em estudos in vivo utilizando uma abordagem espaço-temporal e múltiplos atributos de imagem |
title |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
spellingShingle |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features Silva, Bruno César Gregório da Detecção de células Rastreamento de células Microscopia intravital Análise espaço-temporal Recrutamento leucocitário Cell detection Cell tracking Intravital video microscopy Spatiotemporal analysis Leukocyte recruitment CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
title_short |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
title_full |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
title_fullStr |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
title_full_unstemmed |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
title_sort |
Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features |
author |
Silva, Bruno César Gregório da |
author_facet |
Silva, Bruno César Gregório da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2966688106360375 |
dc.contributor.author.fl_str_mv |
Silva, Bruno César Gregório da |
dc.contributor.advisor1.fl_str_mv |
Ferrari, Ricardo José |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8460861175344306 |
dc.contributor.authorID.fl_str_mv |
67c32dd3-a7c6-4f5e-8ffb-8e665099c0c1 |
contributor_str_mv |
Ferrari, Ricardo José |
dc.subject.por.fl_str_mv |
Detecção de células Rastreamento de células Microscopia intravital Análise espaço-temporal Recrutamento leucocitário |
topic |
Detecção de células Rastreamento de células Microscopia intravital Análise espaço-temporal Recrutamento leucocitário Cell detection Cell tracking Intravital video microscopy Spatiotemporal analysis Leukocyte recruitment CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Cell detection Cell tracking Intravital video microscopy Spatiotemporal analysis Leukocyte recruitment |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
description |
Over the last few years, many researchers have directed their efforts and interests toward in vivo studies of the cellular and molecular mechanisms in the microcirculation of many tissues under different inflammatory conditions. These studies’ main goal is to develop more effective therapeutic strategies for the treatment of inflammatory and autoimmune diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy (IVM) technique, this procedure usually requires an expert to perform visual analysis, which is prone to the inter- and intra-observer variability, besides being a tedious and time-consuming task. This problem claims, therefore, an automated method to detect and track these cells. To this end, this work aims to study and develop computational techniques for the detection and tracking of leukocytes in IVM images. We proposed an automatic computational pipeline where, after a preprocessing stage, we combined the results of frame-basis detection (2D – spatial processing) with those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumetric images formed by stacking all the video frames. While the 2D processing focuses on leukocytes detection without worrying about their tracking, 2D+t processing was intended to assist in the dynamic analysis of cell movement (tracking). We tested three different detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and DCNN. Our results were obtained by qualitative and quantitative evaluations performed over six different IVM videos, where the detected cells were compared with the manual annotations of an expert. They showed the combination of these both processing stages minimized most of the problems involved in IVM cell detection and tracking, such as cell occlusion and the proper discrimination of cell trajectories. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-08-10T15:35:15Z |
dc.date.available.fl_str_mv |
2020-08-10T15:35:15Z |
dc.date.issued.fl_str_mv |
2020-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Bruno César Gregório da. Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13137. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/13137 |
identifier_str_mv |
SILVA, Bruno César Gregório da. Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13137. |
url |
https://repositorio.ufscar.br/handle/ufscar/13137 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 |
dc.relation.authority.fl_str_mv |
8f7fc1dc-47c2-49ef-ac95-2844e18660a3 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/13137/1/PhD_Thesis_BrunoGregorio.pdf https://repositorio.ufscar.br/bitstream/ufscar/13137/2/PPGCC_Template_dec_BCO.pdf https://repositorio.ufscar.br/bitstream/ufscar/13137/3/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/13137/4/PhD_Thesis_BrunoGregorio.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/13137/6/PPGCC_Template_dec_BCO.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/13137/5/PhD_Thesis_BrunoGregorio.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/13137/7/PPGCC_Template_dec_BCO.pdf.jpg |
bitstream.checksum.fl_str_mv |
738e3dad74da47d572892abec12b6e88 af8ef4522b07e454fe078618d3e9ae25 e39d27027a6cc9cb039ad269a5db8e34 d863b0ef084192dcbc923fc29a961d24 72f2ed0c97d98d4566e3d7ed41bd92e1 d7df52cada8ecd3209394cb91f5efa90 3d1d1a29878f63342256526c627e0774 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715619978149888 |