Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features

Detalhes bibliográficos
Autor(a) principal: Silva, Bruno César Gregório da
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/13137
Resumo: Over the last few years, many researchers have directed their efforts and interests toward in vivo studies of the cellular and molecular mechanisms in the microcirculation of many tissues under different inflammatory conditions. These studies’ main goal is to develop more effective therapeutic strategies for the treatment of inflammatory and autoimmune diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy (IVM) technique, this procedure usually requires an expert to perform visual analysis, which is prone to the inter- and intra-observer variability, besides being a tedious and time-consuming task. This problem claims, therefore, an automated method to detect and track these cells. To this end, this work aims to study and develop computational techniques for the detection and tracking of leukocytes in IVM images. We proposed an automatic computational pipeline where, after a preprocessing stage, we combined the results of frame-basis detection (2D – spatial processing) with those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumetric images formed by stacking all the video frames. While the 2D processing focuses on leukocytes detection without worrying about their tracking, 2D+t processing was intended to assist in the dynamic analysis of cell movement (tracking). We tested three different detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and DCNN. Our results were obtained by qualitative and quantitative evaluations performed over six different IVM videos, where the detected cells were compared with the manual annotations of an expert. They showed the combination of these both processing stages minimized most of the problems involved in IVM cell detection and tracking, such as cell occlusion and the proper discrimination of cell trajectories.
id SCAR_58945b942ccfb799f460b13700550270
oai_identifier_str oai:repositorio.ufscar.br:ufscar/13137
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Silva, Bruno César Gregório daFerrari, Ricardo Joséhttp://lattes.cnpq.br/8460861175344306http://lattes.cnpq.br/296668810636037567c32dd3-a7c6-4f5e-8ffb-8e665099c0c12020-08-10T15:35:15Z2020-08-10T15:35:15Z2020-03-30SILVA, Bruno César Gregório da. Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13137.https://repositorio.ufscar.br/handle/ufscar/13137Over the last few years, many researchers have directed their efforts and interests toward in vivo studies of the cellular and molecular mechanisms in the microcirculation of many tissues under different inflammatory conditions. These studies’ main goal is to develop more effective therapeutic strategies for the treatment of inflammatory and autoimmune diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy (IVM) technique, this procedure usually requires an expert to perform visual analysis, which is prone to the inter- and intra-observer variability, besides being a tedious and time-consuming task. This problem claims, therefore, an automated method to detect and track these cells. To this end, this work aims to study and develop computational techniques for the detection and tracking of leukocytes in IVM images. We proposed an automatic computational pipeline where, after a preprocessing stage, we combined the results of frame-basis detection (2D – spatial processing) with those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumetric images formed by stacking all the video frames. While the 2D processing focuses on leukocytes detection without worrying about their tracking, 2D+t processing was intended to assist in the dynamic analysis of cell movement (tracking). We tested three different detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and DCNN. Our results were obtained by qualitative and quantitative evaluations performed over six different IVM videos, where the detected cells were compared with the manual annotations of an expert. They showed the combination of these both processing stages minimized most of the problems involved in IVM cell detection and tracking, such as cell occlusion and the proper discrimination of cell trajectories.Nos últimos anos, um grande número de pesquisadores tem direcionado seus esforços e interesses para estudos in vivo dos mecanismos celulares e moleculares na microcirculação de vários tecidos e em várias condições inflamatórias. O principal objetivo desses estudos é desenvolver estratégias terapêuticas mais eficazes para o tratamento de doenças inflamatórias e autoimunes. A análise do recrutamento leucocitário é um passo importante para entender as interações entre os leucócitos e as células endoteliais na microcirculação de animais vivos. Realizado preferencialmente através da técnica de microscopia intravital (MI), esse procedimento geralmente requer a análise visual de um especialista, que é propensa à intra- e inter-variabilidade do observador, além de ser uma atividade tediosa e demorada. Tal problema reivindica, portanto, um método automatizado para a detecção e rastreamento dessas células. Para tanto, este trabalho visa o estudo e o desenvolvimento de técnicas computacionais para a detecção e rastreamento de leucócitos em imagens de MI. Para isso, propusemos um arcabouço de desenvolvimento computacional automático que, após uma etapa de pré-processamento, combina os resultados da detecção quadro-a-quadro do vídeo (processamento espacial – 2D) com os resultados de uma análise tridimensional (processamento espaço-temporal – 3D=2D+t) feita em imagens volumétricas formadas pelo empilhamento de todos os quadros do vídeo. Neste caso, enquanto o processamento 2D visa a detecção dos leucócitos sem se preocupar com a tarefa de rastreamento, o processamento 2D+t tem o objetivo de auxiliar na análise da dinâmica celular (rastreamento). Nós testamos três abordagens diferentes para o processamento espacial, denominadas MTM-PCA, MTM-DCNN e DCNN. Nossos resultados foram obtidos por meio de avaliações qualitativas e quantitativas realizadas em seis diferentes vídeos de MI, em que as células detectadas foram comparadas com as marcações manuais de um especialista. Esses resultados mostraram que a combinação das duas etapas de processamento foi capaz de minimizar a maioria dos problemas envolvidos na detecção e rastreamento celular em imagens de MI, como a oclusão e a discriminação adequada das trajetórias das células.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001CAPES: 88881.187616/2018-01engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDetecção de célulasRastreamento de célulasMicroscopia intravitalAnálise espaço-temporalRecrutamento leucocitárioCell detectionCell trackingIntravital video microscopySpatiotemporal analysisLeukocyte recruitmentCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOAutomated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image featuresAnálise automática do recrutamento leucocitário em estudos in vivo utilizando uma abordagem espaço-temporal e múltiplos atributos de imageminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6008f7fc1dc-47c2-49ef-ac95-2844e18660a3reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALPhD_Thesis_BrunoGregorio.pdfPhD_Thesis_BrunoGregorio.pdfTese de Doutorado - Bruno Gregórioapplication/pdf33179657https://repositorio.ufscar.br/bitstream/ufscar/13137/1/PhD_Thesis_BrunoGregorio.pdf738e3dad74da47d572892abec12b6e88MD51PPGCC_Template_dec_BCO.pdfPPGCC_Template_dec_BCO.pdfCarta comprovante de autorizaçãoapplication/pdf701888https://repositorio.ufscar.br/bitstream/ufscar/13137/2/PPGCC_Template_dec_BCO.pdfaf8ef4522b07e454fe078618d3e9ae25MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/13137/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTPhD_Thesis_BrunoGregorio.pdf.txtPhD_Thesis_BrunoGregorio.pdf.txtExtracted texttext/plain371835https://repositorio.ufscar.br/bitstream/ufscar/13137/4/PhD_Thesis_BrunoGregorio.pdf.txtd863b0ef084192dcbc923fc29a961d24MD54PPGCC_Template_dec_BCO.pdf.txtPPGCC_Template_dec_BCO.pdf.txtExtracted texttext/plain1695https://repositorio.ufscar.br/bitstream/ufscar/13137/6/PPGCC_Template_dec_BCO.pdf.txt72f2ed0c97d98d4566e3d7ed41bd92e1MD56THUMBNAILPhD_Thesis_BrunoGregorio.pdf.jpgPhD_Thesis_BrunoGregorio.pdf.jpgIM Thumbnailimage/jpeg9890https://repositorio.ufscar.br/bitstream/ufscar/13137/5/PhD_Thesis_BrunoGregorio.pdf.jpgd7df52cada8ecd3209394cb91f5efa90MD55PPGCC_Template_dec_BCO.pdf.jpgPPGCC_Template_dec_BCO.pdf.jpgIM Thumbnailimage/jpeg12729https://repositorio.ufscar.br/bitstream/ufscar/13137/7/PPGCC_Template_dec_BCO.pdf.jpg3d1d1a29878f63342256526c627e0774MD57ufscar/131372023-09-18 18:31:59.619oai:repositorio.ufscar.br:ufscar/13137Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:59Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
dc.title.alternative.por.fl_str_mv Análise automática do recrutamento leucocitário em estudos in vivo utilizando uma abordagem espaço-temporal e múltiplos atributos de imagem
title Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
spellingShingle Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
Silva, Bruno César Gregório da
Detecção de células
Rastreamento de células
Microscopia intravital
Análise espaço-temporal
Recrutamento leucocitário
Cell detection
Cell tracking
Intravital video microscopy
Spatiotemporal analysis
Leukocyte recruitment
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
title_full Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
title_fullStr Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
title_full_unstemmed Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
title_sort Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features
author Silva, Bruno César Gregório da
author_facet Silva, Bruno César Gregório da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2966688106360375
dc.contributor.author.fl_str_mv Silva, Bruno César Gregório da
dc.contributor.advisor1.fl_str_mv Ferrari, Ricardo José
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8460861175344306
dc.contributor.authorID.fl_str_mv 67c32dd3-a7c6-4f5e-8ffb-8e665099c0c1
contributor_str_mv Ferrari, Ricardo José
dc.subject.por.fl_str_mv Detecção de células
Rastreamento de células
Microscopia intravital
Análise espaço-temporal
Recrutamento leucocitário
topic Detecção de células
Rastreamento de células
Microscopia intravital
Análise espaço-temporal
Recrutamento leucocitário
Cell detection
Cell tracking
Intravital video microscopy
Spatiotemporal analysis
Leukocyte recruitment
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.eng.fl_str_mv Cell detection
Cell tracking
Intravital video microscopy
Spatiotemporal analysis
Leukocyte recruitment
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description Over the last few years, many researchers have directed their efforts and interests toward in vivo studies of the cellular and molecular mechanisms in the microcirculation of many tissues under different inflammatory conditions. These studies’ main goal is to develop more effective therapeutic strategies for the treatment of inflammatory and autoimmune diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy (IVM) technique, this procedure usually requires an expert to perform visual analysis, which is prone to the inter- and intra-observer variability, besides being a tedious and time-consuming task. This problem claims, therefore, an automated method to detect and track these cells. To this end, this work aims to study and develop computational techniques for the detection and tracking of leukocytes in IVM images. We proposed an automatic computational pipeline where, after a preprocessing stage, we combined the results of frame-basis detection (2D – spatial processing) with those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumetric images formed by stacking all the video frames. While the 2D processing focuses on leukocytes detection without worrying about their tracking, 2D+t processing was intended to assist in the dynamic analysis of cell movement (tracking). We tested three different detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and DCNN. Our results were obtained by qualitative and quantitative evaluations performed over six different IVM videos, where the detected cells were compared with the manual annotations of an expert. They showed the combination of these both processing stages minimized most of the problems involved in IVM cell detection and tracking, such as cell occlusion and the proper discrimination of cell trajectories.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-08-10T15:35:15Z
dc.date.available.fl_str_mv 2020-08-10T15:35:15Z
dc.date.issued.fl_str_mv 2020-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Bruno César Gregório da. Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13137.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/13137
identifier_str_mv SILVA, Bruno César Gregório da. Automated analysis of leukocyte recruitment for in vivo studies using a spatiotemporal approach and multiple image features. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13137.
url https://repositorio.ufscar.br/handle/ufscar/13137
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 8f7fc1dc-47c2-49ef-ac95-2844e18660a3
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/13137/1/PhD_Thesis_BrunoGregorio.pdf
https://repositorio.ufscar.br/bitstream/ufscar/13137/2/PPGCC_Template_dec_BCO.pdf
https://repositorio.ufscar.br/bitstream/ufscar/13137/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/13137/4/PhD_Thesis_BrunoGregorio.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/13137/6/PPGCC_Template_dec_BCO.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/13137/5/PhD_Thesis_BrunoGregorio.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/13137/7/PPGCC_Template_dec_BCO.pdf.jpg
bitstream.checksum.fl_str_mv 738e3dad74da47d572892abec12b6e88
af8ef4522b07e454fe078618d3e9ae25
e39d27027a6cc9cb039ad269a5db8e34
d863b0ef084192dcbc923fc29a961d24
72f2ed0c97d98d4566e3d7ed41bd92e1
d7df52cada8ecd3209394cb91f5efa90
3d1d1a29878f63342256526c627e0774
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715619978149888