Ordinary and twisted K-theory

Detalhes bibliográficos
Autor(a) principal: Clemente, Gabriel Longatto
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/15841
Resumo: The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting.
id SCAR_643ebe31b5014987ca68f27db4f14836
oai_identifier_str oai:repositorio.ufscar.br:ufscar/15841
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Clemente, Gabriel LongattoRuffino, Fabio Ferrarihttp://lattes.cnpq.br/2512107188781159http://lattes.cnpq.br/9621252774701915a81d0d81-158a-4fae-a6e7-21ba9e6fcf0c2022-04-11T16:19:09Z2022-04-11T16:19:09Z2022-03-28CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15841.https://repositorio.ufscar.br/handle/ufscar/15841The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting.O tópico principal desta dissertação é a K-Teoria Ordinária e Torcida. Começamos descrevendo teorias cohomológicas generalizadas através dos Axiomas de Eilenberg-Steenrod a fim de estabelecer a K-Teoria Ordinária nesses termos. Isto nos permite deduzir suas propriedades estruturais do arcabouço da cohomologia generalizada. Então, expomos as noções elementares da Geometria de Spin para relacioná-la com a K-Teoria Ordinária através do Teorema de Atiyah-Bott-Shapiro. Este resultado nos permite definir o isomorfismo de Thom bem como o mapa de integração, que é conhecido como mapa de Gysin. Depois disso, refraseamos a K-Teoria Ordinária por meio da aplicação do Índice, que nos fornece uma interpretação da K-Teoria através de classes de homotopia de funções contínuas. Em seguida, lidamos com a K-Teoria Torcida. Primeiro, introduzimos o grupo de Grothendieck dos fibrados vetoriais torcidos como um modelo para a K-Teoria Torcida de ordem finita. Então, descrevemos o modelo de dimensão infinita, através de fibrados apropriados de operadores de Fredholm, que lida com classes de torção de qualquer ordem. Finalmente, comparamos estes dois modelos no contexto de ordem finita.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Processo nº 2019/22159-8engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessK-teoria topológicaTeorias cohomológicas generalizadasK-teoria ordináriaGeometria de spinIsomorfismo de thomMapa de gysinOperadores de FredholmAplicação do índiceK-teoria torcidaTopological K-theoryGeneralized cohomology theoriesOrdinary K-theorySpin geometryThom isomorphismGysin mapFredholm operatorsIndex mapTwisted K-theoryCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICAOrdinary and twisted K-theoryK-teoria ordinária e torcidainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600756edf14-844a-440d-92bf-648d61ad3b16reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação_GabrielClemente.pdfDissertação_GabrielClemente.pdfVersão final da dissertação de mestradoapplication/pdf2271635https://repositorio.ufscar.br/bitstream/ufscar/15841/1/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf932ab47ac0e878a784e6ff5e8ebf7205MD51Carta_Comprovante_GabrielClemente.pdfCarta_Comprovante_GabrielClemente.pdfCarta comprovanteapplication/pdf341267https://repositorio.ufscar.br/bitstream/ufscar/15841/3/Carta_Comprovante_GabrielClemente.pdfc40065259df6ebda1dfe2ab5d3d3cf5fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15841/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDissertação_GabrielClemente.pdf.txtDissertação_GabrielClemente.pdf.txtExtracted texttext/plain643656https://repositorio.ufscar.br/bitstream/ufscar/15841/5/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.txt3cb00c5023d5ec84e7e3dc9a77b460b7MD55Carta_Comprovante_GabrielClemente.pdf.txtCarta_Comprovante_GabrielClemente.pdf.txtExtracted texttext/plain1321https://repositorio.ufscar.br/bitstream/ufscar/15841/7/Carta_Comprovante_GabrielClemente.pdf.txtcb9146ec23f7b37d1728016a25114087MD57THUMBNAILDissertação_GabrielClemente.pdf.jpgDissertação_GabrielClemente.pdf.jpgIM Thumbnailimage/jpeg9200https://repositorio.ufscar.br/bitstream/ufscar/15841/6/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.jpg62f7cb6aa79ce63ff642e93898440fd4MD56Carta_Comprovante_GabrielClemente.pdf.jpgCarta_Comprovante_GabrielClemente.pdf.jpgIM Thumbnailimage/jpeg13155https://repositorio.ufscar.br/bitstream/ufscar/15841/8/Carta_Comprovante_GabrielClemente.pdf.jpg19c90569864f1311ddcea36239886b84MD58ufscar/158412023-09-18 18:32:16.02oai:repositorio.ufscar.br:ufscar/15841Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:16Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Ordinary and twisted K-theory
dc.title.alternative.por.fl_str_mv K-teoria ordinária e torcida
title Ordinary and twisted K-theory
spellingShingle Ordinary and twisted K-theory
Clemente, Gabriel Longatto
K-teoria topológica
Teorias cohomológicas generalizadas
K-teoria ordinária
Geometria de spin
Isomorfismo de thom
Mapa de gysin
Operadores de Fredholm
Aplicação do índice
K-teoria torcida
Topological K-theory
Generalized cohomology theories
Ordinary K-theory
Spin geometry
Thom isomorphism
Gysin map
Fredholm operators
Index map
Twisted K-theory
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA
title_short Ordinary and twisted K-theory
title_full Ordinary and twisted K-theory
title_fullStr Ordinary and twisted K-theory
title_full_unstemmed Ordinary and twisted K-theory
title_sort Ordinary and twisted K-theory
author Clemente, Gabriel Longatto
author_facet Clemente, Gabriel Longatto
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9621252774701915
dc.contributor.author.fl_str_mv Clemente, Gabriel Longatto
dc.contributor.advisor1.fl_str_mv Ruffino, Fabio Ferrari
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2512107188781159
dc.contributor.authorID.fl_str_mv a81d0d81-158a-4fae-a6e7-21ba9e6fcf0c
contributor_str_mv Ruffino, Fabio Ferrari
dc.subject.por.fl_str_mv K-teoria topológica
Teorias cohomológicas generalizadas
K-teoria ordinária
Geometria de spin
Isomorfismo de thom
Mapa de gysin
Operadores de Fredholm
Aplicação do índice
K-teoria torcida
topic K-teoria topológica
Teorias cohomológicas generalizadas
K-teoria ordinária
Geometria de spin
Isomorfismo de thom
Mapa de gysin
Operadores de Fredholm
Aplicação do índice
K-teoria torcida
Topological K-theory
Generalized cohomology theories
Ordinary K-theory
Spin geometry
Thom isomorphism
Gysin map
Fredholm operators
Index map
Twisted K-theory
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA
dc.subject.eng.fl_str_mv Topological K-theory
Generalized cohomology theories
Ordinary K-theory
Spin geometry
Thom isomorphism
Gysin map
Fredholm operators
Index map
Twisted K-theory
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA
description The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-04-11T16:19:09Z
dc.date.available.fl_str_mv 2022-04-11T16:19:09Z
dc.date.issued.fl_str_mv 2022-03-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15841.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/15841
identifier_str_mv CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15841.
url https://repositorio.ufscar.br/handle/ufscar/15841
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 756edf14-844a-440d-92bf-648d61ad3b16
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/15841/1/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15841/3/Carta_Comprovante_GabrielClemente.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15841/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/15841/5/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15841/7/Carta_Comprovante_GabrielClemente.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15841/6/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/15841/8/Carta_Comprovante_GabrielClemente.pdf.jpg
bitstream.checksum.fl_str_mv 932ab47ac0e878a784e6ff5e8ebf7205
c40065259df6ebda1dfe2ab5d3d3cf5f
e39d27027a6cc9cb039ad269a5db8e34
3cb00c5023d5ec84e7e3dc9a77b460b7
cb9146ec23f7b37d1728016a25114087
62f7cb6aa79ce63ff642e93898440fd4
19c90569864f1311ddcea36239886b84
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715645534044160