Ordinary and twisted K-theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/15841 |
Resumo: | The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting. |
id |
SCAR_643ebe31b5014987ca68f27db4f14836 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/15841 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Clemente, Gabriel LongattoRuffino, Fabio Ferrarihttp://lattes.cnpq.br/2512107188781159http://lattes.cnpq.br/9621252774701915a81d0d81-158a-4fae-a6e7-21ba9e6fcf0c2022-04-11T16:19:09Z2022-04-11T16:19:09Z2022-03-28CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15841.https://repositorio.ufscar.br/handle/ufscar/15841The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting.O tópico principal desta dissertação é a K-Teoria Ordinária e Torcida. Começamos descrevendo teorias cohomológicas generalizadas através dos Axiomas de Eilenberg-Steenrod a fim de estabelecer a K-Teoria Ordinária nesses termos. Isto nos permite deduzir suas propriedades estruturais do arcabouço da cohomologia generalizada. Então, expomos as noções elementares da Geometria de Spin para relacioná-la com a K-Teoria Ordinária através do Teorema de Atiyah-Bott-Shapiro. Este resultado nos permite definir o isomorfismo de Thom bem como o mapa de integração, que é conhecido como mapa de Gysin. Depois disso, refraseamos a K-Teoria Ordinária por meio da aplicação do Índice, que nos fornece uma interpretação da K-Teoria através de classes de homotopia de funções contínuas. Em seguida, lidamos com a K-Teoria Torcida. Primeiro, introduzimos o grupo de Grothendieck dos fibrados vetoriais torcidos como um modelo para a K-Teoria Torcida de ordem finita. Então, descrevemos o modelo de dimensão infinita, através de fibrados apropriados de operadores de Fredholm, que lida com classes de torção de qualquer ordem. Finalmente, comparamos estes dois modelos no contexto de ordem finita.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Processo nº 2019/22159-8engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessK-teoria topológicaTeorias cohomológicas generalizadasK-teoria ordináriaGeometria de spinIsomorfismo de thomMapa de gysinOperadores de FredholmAplicação do índiceK-teoria torcidaTopological K-theoryGeneralized cohomology theoriesOrdinary K-theorySpin geometryThom isomorphismGysin mapFredholm operatorsIndex mapTwisted K-theoryCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICAOrdinary and twisted K-theoryK-teoria ordinária e torcidainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600756edf14-844a-440d-92bf-648d61ad3b16reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação_GabrielClemente.pdfDissertação_GabrielClemente.pdfVersão final da dissertação de mestradoapplication/pdf2271635https://repositorio.ufscar.br/bitstream/ufscar/15841/1/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf932ab47ac0e878a784e6ff5e8ebf7205MD51Carta_Comprovante_GabrielClemente.pdfCarta_Comprovante_GabrielClemente.pdfCarta comprovanteapplication/pdf341267https://repositorio.ufscar.br/bitstream/ufscar/15841/3/Carta_Comprovante_GabrielClemente.pdfc40065259df6ebda1dfe2ab5d3d3cf5fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15841/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDissertação_GabrielClemente.pdf.txtDissertação_GabrielClemente.pdf.txtExtracted texttext/plain643656https://repositorio.ufscar.br/bitstream/ufscar/15841/5/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.txt3cb00c5023d5ec84e7e3dc9a77b460b7MD55Carta_Comprovante_GabrielClemente.pdf.txtCarta_Comprovante_GabrielClemente.pdf.txtExtracted texttext/plain1321https://repositorio.ufscar.br/bitstream/ufscar/15841/7/Carta_Comprovante_GabrielClemente.pdf.txtcb9146ec23f7b37d1728016a25114087MD57THUMBNAILDissertação_GabrielClemente.pdf.jpgDissertação_GabrielClemente.pdf.jpgIM Thumbnailimage/jpeg9200https://repositorio.ufscar.br/bitstream/ufscar/15841/6/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.jpg62f7cb6aa79ce63ff642e93898440fd4MD56Carta_Comprovante_GabrielClemente.pdf.jpgCarta_Comprovante_GabrielClemente.pdf.jpgIM Thumbnailimage/jpeg13155https://repositorio.ufscar.br/bitstream/ufscar/15841/8/Carta_Comprovante_GabrielClemente.pdf.jpg19c90569864f1311ddcea36239886b84MD58ufscar/158412023-09-18 18:32:16.02oai:repositorio.ufscar.br:ufscar/15841Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:16Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Ordinary and twisted K-theory |
dc.title.alternative.por.fl_str_mv |
K-teoria ordinária e torcida |
title |
Ordinary and twisted K-theory |
spellingShingle |
Ordinary and twisted K-theory Clemente, Gabriel Longatto K-teoria topológica Teorias cohomológicas generalizadas K-teoria ordinária Geometria de spin Isomorfismo de thom Mapa de gysin Operadores de Fredholm Aplicação do índice K-teoria torcida Topological K-theory Generalized cohomology theories Ordinary K-theory Spin geometry Thom isomorphism Gysin map Fredholm operators Index map Twisted K-theory CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA |
title_short |
Ordinary and twisted K-theory |
title_full |
Ordinary and twisted K-theory |
title_fullStr |
Ordinary and twisted K-theory |
title_full_unstemmed |
Ordinary and twisted K-theory |
title_sort |
Ordinary and twisted K-theory |
author |
Clemente, Gabriel Longatto |
author_facet |
Clemente, Gabriel Longatto |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/9621252774701915 |
dc.contributor.author.fl_str_mv |
Clemente, Gabriel Longatto |
dc.contributor.advisor1.fl_str_mv |
Ruffino, Fabio Ferrari |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2512107188781159 |
dc.contributor.authorID.fl_str_mv |
a81d0d81-158a-4fae-a6e7-21ba9e6fcf0c |
contributor_str_mv |
Ruffino, Fabio Ferrari |
dc.subject.por.fl_str_mv |
K-teoria topológica Teorias cohomológicas generalizadas K-teoria ordinária Geometria de spin Isomorfismo de thom Mapa de gysin Operadores de Fredholm Aplicação do índice K-teoria torcida |
topic |
K-teoria topológica Teorias cohomológicas generalizadas K-teoria ordinária Geometria de spin Isomorfismo de thom Mapa de gysin Operadores de Fredholm Aplicação do índice K-teoria torcida Topological K-theory Generalized cohomology theories Ordinary K-theory Spin geometry Thom isomorphism Gysin map Fredholm operators Index map Twisted K-theory CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA |
dc.subject.eng.fl_str_mv |
Topological K-theory Generalized cohomology theories Ordinary K-theory Spin geometry Thom isomorphism Gysin map Fredholm operators Index map Twisted K-theory |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA |
description |
The main topic of this thesis consists in Ordinary and Twisted Topological K-Theory. We begin by describing generalized cohomology theories through the Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows us to deduce its structural properties from the framework of generalized cohomology. Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to construct the Thom isomorphism as well as the integration map, which is known as Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map, which provides an interpretation of K-Theory through homotopy classes of continuous functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the Grothendieck group of twisted vector bundles as a model for finite-order Twisted K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles of Fredholm operators, that holds for twisting classes of any order. Finally, we compare these two models in the finite-order setting. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-04-11T16:19:09Z |
dc.date.available.fl_str_mv |
2022-04-11T16:19:09Z |
dc.date.issued.fl_str_mv |
2022-03-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15841. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/15841 |
identifier_str_mv |
CLEMENTE, Gabriel Longatto. Ordinary and twisted K-theory. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15841. |
url |
https://repositorio.ufscar.br/handle/ufscar/15841 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
756edf14-844a-440d-92bf-648d61ad3b16 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/15841/1/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf https://repositorio.ufscar.br/bitstream/ufscar/15841/3/Carta_Comprovante_GabrielClemente.pdf https://repositorio.ufscar.br/bitstream/ufscar/15841/4/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/15841/5/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/15841/7/Carta_Comprovante_GabrielClemente.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/15841/6/Disserta%c3%a7%c3%a3o_GabrielClemente.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/15841/8/Carta_Comprovante_GabrielClemente.pdf.jpg |
bitstream.checksum.fl_str_mv |
932ab47ac0e878a784e6ff5e8ebf7205 c40065259df6ebda1dfe2ab5d3d3cf5f e39d27027a6cc9cb039ad269a5db8e34 3cb00c5023d5ec84e7e3dc9a77b460b7 cb9146ec23f7b37d1728016a25114087 62f7cb6aa79ce63ff642e93898440fd4 19c90569864f1311ddcea36239886b84 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715645534044160 |