0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors

Detalhes bibliográficos
Autor(a) principal: Facure, Murilo Henrique Moreira
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/18832
Resumo: Graphene Quantum Dots (GQDs) are small fragments of one or a few layers of graphene with lateral dimensions inferior to 100 nm. GQDs present some characteristics similar to those of graphene, such as a high surface area/volume ratio and chemical stability. In addition, GQDs present a bandgap between their valence and electronic conduction bands. This bandgap gives rise to one of the most investigated properties of GQDs: their photoluminescence, which enables their application as luminescent sensors. In this sense, in the first work, hydrothermal syntheses of GQDs from graphene oxide (GO) were studied aiming at obtaining a material with greater photoluminescence intensity for application in luminescent sensors. The synthesis temperature, pH of the GO solution, and GO concentration were evaluated to optimize the quantum yield of GQDs. An optimized value of 8.9% was obtained. The influence of each parameter on the composition and properties of the GQDs was carried out from the physical-chemical characterization of the materials. The synthesized materials were used in the detection of Fe3+ ions in aqueous solutions by luminescence quenching, obtaining a detection limit of 0.136 M. Like GQDs, the discovery of a new class of materials known as MXenes was inspired by the discovery of graphene. MXenes are 2D materials, in which transition metal layers are interleaved with carbon and/or nitrogen layers. Such materials have demonstrated high energy storage capacity, being widely exploited in devices such as supercapacitors and batteries. However, the restacking of the MXene layers and the narrow potential window usually obtained limit the performance of these materials in such applications. In another work, nanodiamonds (NDs) were used to prevent the restacking of the MXene layers during its use as a supercapacitor electrode. The pillaring effect obtained with the NDs allowed a greater diffusion of protons between the layers of the MXene Ti3C2Tx, resulting in a capacitance of 235 F/g (561 F/cm3) when used in 3 M AlCl3 electrolyte. Furthermore, a wide potential window of 1.2 V could be used due to the reduced water activity in the electrolyte.
id SCAR_666b1c32bac46e0ccbb71008a8fef106
oai_identifier_str oai:repositorio.ufscar.br:ufscar/18832
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Facure, Murilo Henrique MoreiraCorrêa, Daniel Souzahttp://lattes.cnpq.br/0461451015026948http://lattes.cnpq.br/4173216607463824https://orcid.org/0000-0003-0858-0364https://orcid.org/0000-0002-5592-062709fd8b71-1b53-4797-b975-9515612e739c2023-10-27T12:44:38Z2023-10-27T12:44:38Z2023-10-20FACURE, Murilo Henrique Moreira. Nanomateriais 0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitores. 2023. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18832.https://repositorio.ufscar.br/handle/ufscar/18832Graphene Quantum Dots (GQDs) are small fragments of one or a few layers of graphene with lateral dimensions inferior to 100 nm. GQDs present some characteristics similar to those of graphene, such as a high surface area/volume ratio and chemical stability. In addition, GQDs present a bandgap between their valence and electronic conduction bands. This bandgap gives rise to one of the most investigated properties of GQDs: their photoluminescence, which enables their application as luminescent sensors. In this sense, in the first work, hydrothermal syntheses of GQDs from graphene oxide (GO) were studied aiming at obtaining a material with greater photoluminescence intensity for application in luminescent sensors. The synthesis temperature, pH of the GO solution, and GO concentration were evaluated to optimize the quantum yield of GQDs. An optimized value of 8.9% was obtained. The influence of each parameter on the composition and properties of the GQDs was carried out from the physical-chemical characterization of the materials. The synthesized materials were used in the detection of Fe3+ ions in aqueous solutions by luminescence quenching, obtaining a detection limit of 0.136 M. Like GQDs, the discovery of a new class of materials known as MXenes was inspired by the discovery of graphene. MXenes are 2D materials, in which transition metal layers are interleaved with carbon and/or nitrogen layers. Such materials have demonstrated high energy storage capacity, being widely exploited in devices such as supercapacitors and batteries. However, the restacking of the MXene layers and the narrow potential window usually obtained limit the performance of these materials in such applications. In another work, nanodiamonds (NDs) were used to prevent the restacking of the MXene layers during its use as a supercapacitor electrode. The pillaring effect obtained with the NDs allowed a greater diffusion of protons between the layers of the MXene Ti3C2Tx, resulting in a capacitance of 235 F/g (561 F/cm3) when used in 3 M AlCl3 electrolyte. Furthermore, a wide potential window of 1.2 V could be used due to the reduced water activity in the electrolyte.Quantum dots de grafeno (GQDs) são pequenos fragmentos de uma ou poucas camadas de grafeno com dimensões laterais menores que 100 nm. Além de possuírem algumas características similares às do grafeno, como elevada razão área superficial/volume e estabilidade química, os GQDs apresentam um bandgap entre suas bandas de valência e de condução eletrônica. A presença do bandgap dá origem a uma das propriedades mais investigadas dos GQDs: sua fotoluminescência, que possibilita a aplicação destes materiais em sensores luminescentes. Neste sentido, em um primeiro trabalho, a síntese hidrotermal de GQDs a partir do grafeno oxidado (GO) foi estudada na busca por um material com maior intensidade da fotoluminescência visando sua aplicação em sensores luminescentes. A temperatura da síntese, o pH e a concentração da solução de GO foram avaliados para otimização do rendimento quântico dos GQDs. Um valor otimizado de 8,9% foi obtido. A influência de cada parâmetro na composição e propriedades dos GQDs foi realizada a partir da caracterização físico-química dos materiais. Os materiais sintetizados foram utilizados na detecção de íons Fe3+ em soluções aquosas por supressão de luminescência, obtendo-se um limite de detecção de 0.136 M. Assim como os GQDs, a descoberta de uma nova classe de materiais denominados MXenes foi inspirada na descoberta do grafeno. MXenes são materiais 2D, nos quais camadas de um metal de transição são intercaladas por camadas de carbono e/ou nitrogênio. Tais materiais têm demonstrado alta capacidade de armazenamento de energia, sendo muito utilizados em dispositivos como supercapacitores e baterias. No entanto, o acoplamento das camadas do material e a estreita janela de potencial geralmente alcançada são fatores que limitam a performance desses materiais nesses tipos de aplicações. Em outro trabalho, nanodiamantes (NDs) foram utilizados para evitar o acoplamento das camadas do MXene durante sua utilização como supercapacitor. O efeito obtido com os NDs permitiu uma maior difusão de prótons por entre as camadas do MXene Ti3C2Tx, resultando em capacitância de 235 F/g (561 F/cm3) ao ser utilizado em eletrólito 3 M AlCl3. Além disso, uma ampla janela de potencial de 1.2 V foi obtida devido à reduzida atividade da água no eletrólito.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2017/10582-82021/11683-8engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarAttribution-NonCommercial-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-sa/3.0/br/info:eu-repo/semantics/openAccessPontos quânticos de grafenoMXenesSensores fluorescentesSupercapacitorMateriais 0DMateriais 2DSíntese hidrotermalRendimento quânticoPseudocapacitorGraphene quantum dotsFluorescent sensorsEnergy storage deviceArmazenamento de energia0D materials2D materialsHydrothermal synthesisQuantum yieldENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOSCIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006006c933f38-e669-4dae-b1cd-1be323145b27reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese-MHMF_Versão Final.pdfTese-MHMF_Versão Final.pdfapplication/pdf4520391https://repositorio.ufscar.br/bitstream/ufscar/18832/1/Tese-MHMF_Vers%c3%a3o%20Final.pdfefd2a3607085246293851371b5e0766cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81036https://repositorio.ufscar.br/bitstream/ufscar/18832/2/license_rdf36c17387d15ae3a457ba8815a26942c5MD52TEXTTese-MHMF_Versão Final.pdf.txtTese-MHMF_Versão Final.pdf.txtExtracted texttext/plain200459https://repositorio.ufscar.br/bitstream/ufscar/18832/3/Tese-MHMF_Vers%c3%a3o%20Final.pdf.txt6d5079a19f1c3610b54ab8e60316e392MD53ufscar/188322024-05-14 17:18:59.491oai:repositorio.ufscar.br:ufscar/18832Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222024-05-14T17:18:59Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
dc.title.alternative.por.fl_str_mv 0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitores
title 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
spellingShingle 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
Facure, Murilo Henrique Moreira
Pontos quânticos de grafeno
MXenes
Sensores fluorescentes
Supercapacitor
Materiais 0D
Materiais 2D
Síntese hidrotermal
Rendimento quântico
Pseudocapacitor
Graphene quantum dots
Fluorescent sensors
Energy storage device
Armazenamento de energia
0D materials
2D materials
Hydrothermal synthesis
Quantum yield
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA
title_short 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
title_full 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
title_fullStr 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
title_full_unstemmed 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
title_sort 0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitors
author Facure, Murilo Henrique Moreira
author_facet Facure, Murilo Henrique Moreira
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4173216607463824
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0003-0858-0364
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0002-5592-0627
dc.contributor.author.fl_str_mv Facure, Murilo Henrique Moreira
dc.contributor.advisor1.fl_str_mv Corrêa, Daniel Souza
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0461451015026948
dc.contributor.authorID.fl_str_mv 09fd8b71-1b53-4797-b975-9515612e739c
contributor_str_mv Corrêa, Daniel Souza
dc.subject.por.fl_str_mv Pontos quânticos de grafeno
MXenes
Sensores fluorescentes
Supercapacitor
Materiais 0D
Materiais 2D
Síntese hidrotermal
Rendimento quântico
Pseudocapacitor
topic Pontos quânticos de grafeno
MXenes
Sensores fluorescentes
Supercapacitor
Materiais 0D
Materiais 2D
Síntese hidrotermal
Rendimento quântico
Pseudocapacitor
Graphene quantum dots
Fluorescent sensors
Energy storage device
Armazenamento de energia
0D materials
2D materials
Hydrothermal synthesis
Quantum yield
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA
dc.subject.eng.fl_str_mv Graphene quantum dots
Fluorescent sensors
Energy storage device
Armazenamento de energia
0D materials
2D materials
Hydrothermal synthesis
Quantum yield
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOS
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA
description Graphene Quantum Dots (GQDs) are small fragments of one or a few layers of graphene with lateral dimensions inferior to 100 nm. GQDs present some characteristics similar to those of graphene, such as a high surface area/volume ratio and chemical stability. In addition, GQDs present a bandgap between their valence and electronic conduction bands. This bandgap gives rise to one of the most investigated properties of GQDs: their photoluminescence, which enables their application as luminescent sensors. In this sense, in the first work, hydrothermal syntheses of GQDs from graphene oxide (GO) were studied aiming at obtaining a material with greater photoluminescence intensity for application in luminescent sensors. The synthesis temperature, pH of the GO solution, and GO concentration were evaluated to optimize the quantum yield of GQDs. An optimized value of 8.9% was obtained. The influence of each parameter on the composition and properties of the GQDs was carried out from the physical-chemical characterization of the materials. The synthesized materials were used in the detection of Fe3+ ions in aqueous solutions by luminescence quenching, obtaining a detection limit of 0.136 M. Like GQDs, the discovery of a new class of materials known as MXenes was inspired by the discovery of graphene. MXenes are 2D materials, in which transition metal layers are interleaved with carbon and/or nitrogen layers. Such materials have demonstrated high energy storage capacity, being widely exploited in devices such as supercapacitors and batteries. However, the restacking of the MXene layers and the narrow potential window usually obtained limit the performance of these materials in such applications. In another work, nanodiamonds (NDs) were used to prevent the restacking of the MXene layers during its use as a supercapacitor electrode. The pillaring effect obtained with the NDs allowed a greater diffusion of protons between the layers of the MXene Ti3C2Tx, resulting in a capacitance of 235 F/g (561 F/cm3) when used in 3 M AlCl3 electrolyte. Furthermore, a wide potential window of 1.2 V could be used due to the reduced water activity in the electrolyte.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-10-27T12:44:38Z
dc.date.available.fl_str_mv 2023-10-27T12:44:38Z
dc.date.issued.fl_str_mv 2023-10-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FACURE, Murilo Henrique Moreira. Nanomateriais 0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitores. 2023. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18832.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/18832
identifier_str_mv FACURE, Murilo Henrique Moreira. Nanomateriais 0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitores. 2023. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18832.
url https://repositorio.ufscar.br/handle/ufscar/18832
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 6c933f38-e669-4dae-b1cd-1be323145b27
dc.rights.driver.fl_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/18832/1/Tese-MHMF_Vers%c3%a3o%20Final.pdf
https://repositorio.ufscar.br/bitstream/ufscar/18832/2/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/18832/3/Tese-MHMF_Vers%c3%a3o%20Final.pdf.txt
bitstream.checksum.fl_str_mv efd2a3607085246293851371b5e0766c
36c17387d15ae3a457ba8815a26942c5
6d5079a19f1c3610b54ab8e60316e392
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136428903137280