Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®

Detalhes bibliográficos
Autor(a) principal: Fonseca, Murilo Amaral
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11806
Resumo: High fructose syrup is a sweetener widely used as a substitute for sucrose by the food and beverage industry. It has many advantages such as relative sweetness superior to sucrose, high solubility, crystallization resistance and humectant action. Its current industrial production is by enzymatic route basically occurring in three processes: liquefaction, saccharification and isomerization, by the action of the enzymes α-amylase, amyloglucosidase (AMG) and glucose isomerase (GI), respectively. Due to the fact that these enzymes are conducted under different conditions, all three processes are sequential, requiring time, equipment, and reagents for pH adjustment. Moreover, the enzymes α-amylase and amyloglucosidase are applied in a soluble form, limiting their use to batch operations. Due to its considerable industrial interest, glucose isomerase is marketed in its immobilized form. In the search for alternatives to increase productivity and efficiency of processes with lower operating costs, the aim of this research is to study the application of a simultaneous saccharification and isomerization process that could be operated repeatedly, reusing the biocatalysts employed. In order to develop this simultaneous multi-enzymatic process, initially it would be necessary to immobilize the AMG in order to make it insoluble and operationally more stable. The preparation of cross-linked enzyme aggregates (CLEA) is a simple, cost-effective and carrier-free technique capable of generating insoluble biocatalysts with high volumetric activity and improved stability. Its preparation consists of enzyme aggregation by precipitation and its subsequent cross-linking with a bifunctional agent. In this study, the CLEAs of AMG were prepared co-aggregated in the presence of polyethyleneimine (PEI) and/or starch, with aminated magnetic nanoparticles (MNPs) or bovine serum albumin (BSA), in order to improve the properties of the catalyst. The CLEAs prepared only with MNPs at different glutaraldehyde concentrations yielded a recovered activity of around 20%. The addition of starch or PEI increased the recovered activity around twofold (40%). Moreover, under the same conditions, AMG co-aggregated with BSA was also synthesized, yielding CLEAs with very similar recovered activity. Both CLEAs (co-aggregated with MNPs or BSA) were four times more stable than the soluble enzyme. These CLEAs were also evaluated in the hydrolysis of starch at 35% (w/v), achieving more than 95% starch-to-glucose conversion measured as Dextrose Equivalent (DE). Besides, both CLEAs could be reused for five cycles maintaining a DE of around 90%. Although both CLEAs had good properties, magnetic CLEAs could be more attractive because of their easy separation by an external magnetic field. Having the immobilized biocatalysts (AMG CLEA and GI) it was possible to work in a wider operational window, allowing the application of a factorial design with a central composite rotatable design, which was able to define an optimum pH and process temperature condition, as well as the best relation between the two enzymes. Simultaneous saccharification and isomerization from a dextrin solution 35% (w/v) reached a DE above 95%, with conversion yields around 48% of fructose at the end of 30 h of reaction. In addition, the catalysts could be reused for six consecutive cycles, maintaining conversion yields around 47% of fructose without loss of activity and with easy recovery of the biocatalysts. Furthermore, because they are of different natures (magnetic CLEA of amyloglucosidase and pellets of GI), if there is any inactivation of one of the biocatalysts, they could be easily separated and recharged individually.
id SCAR_68d4d9108d55be755bdf84df33e63bc5
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11806
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Fonseca, Murilo AmaralTardioli, Paulo Waldirhttp://lattes.cnpq.br/0808991927126468http://lattes.cnpq.br/26794146759925738acea0fa-04db-4085-bfdc-3e64ce84b5752019-09-09T19:00:38Z2019-09-09T19:00:38Z2019-07-25FONSECA, Murilo Amaral. Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®. 2019. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11806.https://repositorio.ufscar.br/handle/ufscar/11806High fructose syrup is a sweetener widely used as a substitute for sucrose by the food and beverage industry. It has many advantages such as relative sweetness superior to sucrose, high solubility, crystallization resistance and humectant action. Its current industrial production is by enzymatic route basically occurring in three processes: liquefaction, saccharification and isomerization, by the action of the enzymes α-amylase, amyloglucosidase (AMG) and glucose isomerase (GI), respectively. Due to the fact that these enzymes are conducted under different conditions, all three processes are sequential, requiring time, equipment, and reagents for pH adjustment. Moreover, the enzymes α-amylase and amyloglucosidase are applied in a soluble form, limiting their use to batch operations. Due to its considerable industrial interest, glucose isomerase is marketed in its immobilized form. In the search for alternatives to increase productivity and efficiency of processes with lower operating costs, the aim of this research is to study the application of a simultaneous saccharification and isomerization process that could be operated repeatedly, reusing the biocatalysts employed. In order to develop this simultaneous multi-enzymatic process, initially it would be necessary to immobilize the AMG in order to make it insoluble and operationally more stable. The preparation of cross-linked enzyme aggregates (CLEA) is a simple, cost-effective and carrier-free technique capable of generating insoluble biocatalysts with high volumetric activity and improved stability. Its preparation consists of enzyme aggregation by precipitation and its subsequent cross-linking with a bifunctional agent. In this study, the CLEAs of AMG were prepared co-aggregated in the presence of polyethyleneimine (PEI) and/or starch, with aminated magnetic nanoparticles (MNPs) or bovine serum albumin (BSA), in order to improve the properties of the catalyst. The CLEAs prepared only with MNPs at different glutaraldehyde concentrations yielded a recovered activity of around 20%. The addition of starch or PEI increased the recovered activity around twofold (40%). Moreover, under the same conditions, AMG co-aggregated with BSA was also synthesized, yielding CLEAs with very similar recovered activity. Both CLEAs (co-aggregated with MNPs or BSA) were four times more stable than the soluble enzyme. These CLEAs were also evaluated in the hydrolysis of starch at 35% (w/v), achieving more than 95% starch-to-glucose conversion measured as Dextrose Equivalent (DE). Besides, both CLEAs could be reused for five cycles maintaining a DE of around 90%. Although both CLEAs had good properties, magnetic CLEAs could be more attractive because of their easy separation by an external magnetic field. Having the immobilized biocatalysts (AMG CLEA and GI) it was possible to work in a wider operational window, allowing the application of a factorial design with a central composite rotatable design, which was able to define an optimum pH and process temperature condition, as well as the best relation between the two enzymes. Simultaneous saccharification and isomerization from a dextrin solution 35% (w/v) reached a DE above 95%, with conversion yields around 48% of fructose at the end of 30 h of reaction. In addition, the catalysts could be reused for six consecutive cycles, maintaining conversion yields around 47% of fructose without loss of activity and with easy recovery of the biocatalysts. Furthermore, because they are of different natures (magnetic CLEA of amyloglucosidase and pellets of GI), if there is any inactivation of one of the biocatalysts, they could be easily separated and recharged individually.O xarope rico em frutose é um adoçante amplamente utilizado como substituto da sacarose pela indústria de alimentos e bebidas, com muitas vantagens, como doçura relativa superior à sacarose, alta solubilidade, resistência à cristalização e ação umectante. Sua produção industrial atual é via enzimática, ocorrendo basicamente em três processos: liquefação, sacarificação e isomerização, pela ação das enzimas α-amilase, amiloglicosidase (AMG) e glicose isomerase (GI), respectivamente. Devido ao fato de que essas enzimas operam em diferentes condições de pH e temperaturas, os três processos são realizados de maneira sequencial, demandando tempo, equipamentos e reagentes para o ajuste do pH. Além disso, as enzimas α-amilase e amiloglicosidase são aplicadas na forma solúvel, limitando seu uso a operações em bateladas. A glicose isomerase, por ser de grande interesse industrial, é comercializada em sua forma imobilizada. Na busca por alternativas para aumentar a produtividade e eficiência do processo com menores custos operacionais, este trabalho teve como objetivo estudar a aplicação de um processo simultâneo de sacarificação e isomerização, que pudesse ser operado repetidamente, reutilizando os biocatalisadores empregados. Para desenvolver esse processo multi-enzimático simultâneo, seria inicialmente necessário realizar a imobilização da AMG, com o intuito de torna-la insolúvel e operacionalmente mais estável. O preparo de agregados enzimáticos entrecruzados, conhecida como CLEA (do inglês cross-linked enzyme aggregate), é uma técnica simples, custo-efetiva e sem o uso de suporte, capaz de gerar biocatalisadores insolúveis com alta atividade volumétrica e com estabilidade melhorada. Seu preparo consiste na agregação da enzima, por precipitação, e sua posterior reticulação, com um agente bifuncional. Neste trabalho, os CLEAs de amiloglicosidase foram preparados co-agregados na presença de polietilenoimina (PEI) e/ou amido, com nanopartículas magnéticas aminadas (MNPs) ou albumina de soro bovino (BSA), com o intuito de melhorar as propriedades do catalisador. Os CLEAs preparados apenas com MNPs em diferentes concentrações de glutaraldeído forneceram atividade recuperada de cerca de 20%. A adição de amido ou PEI aumentaram a atividade recuperada para em torno duas vezes (40%). Além disso, sob as mesmas condições, a AMG co-agregada com BSA também foi sintetizada, produzindo CLEAs com atividades recuperadas muito semelhantes. Ambos os CLEAs (co-agregados com PEI e MNPs ou BSA) foram quatro vezes mais estáveis que a enzima solúvel. Estes CLEAs também foram avaliados na hidrólise do amido a 35% (m/v), alcançando mais de 95% de conversão de amido em glicose, medida como Dextrose Equivalente (DE). Além disso, os dois tipos de CLEAs puderam ser reutilizados por cinco ciclos, mantendo uma DE em torno cerca de 90%. Embora ambos CLEAs tivessem boas propriedades, os CLEAs magnéticos foram mais atraentes devido à sua fácil separação por um campo magnético externo. Com os biocatalisadores imobilizados (CLEA de AMG e a GI) foi possível trabalhar em uma janela de operação mais ampla, permitindo a aplicação de um planejamento fatorial com delineamento composto central rotacional, que foi capaz de definir uma condição ótima de pH e temperatura do processo, bem como a melhor relação entre as duas enzimas. A sacarificação e isomerização simultâneas a partir de uma solução de dextrina a 35% (m/v) atingiram uma DE acima de 95%, com rendimentos de conversão em torno de 48% de frutose ao final de 30 h de reação. Além disso, os catalisadores puderam ser reutilizados por seis ciclos consecutivos, mantendo a conversão em torno de 47% de frutose sem perda de atividade e com fácil recuperação dos biocatalisadores. Além disso, por serem de naturezas diferentes (CLEA magnético de AMG e pellets de GI), caso haja a inativação de um dos biocatalisadores, estes poderiam ser facilmente separados e recarregados individualmente.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 142107.2015-8engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarXarope rico em frutoseSacarificação e isomerização simultâneaAgregados de enzima entrecruzadosAmiloglicosidaseGlicose isomeraseHigh fructose syrupSimultaneous saccharification and isomerizationCross-linked enzyme aggregateAmyloglucosidaseGlucose isomeraseENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICASacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®Simultaneous saccharification and isomerization of dextrin in the production of fructose syrup by synergic action of magnetic CLEAs of amyloglucosidase and Sweetzyme®info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060057a91b28-06b2-4fc7-b127-2a5005569c49info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese - Murilo Amaral Fonseca.pdfTese - Murilo Amaral Fonseca.pdfapplication/pdf14604453https://repositorio.ufscar.br/bitstream/ufscar/11806/1/Tese%20-%20Murilo%20Amaral%20Fonseca.pdf9c8648933fdaf69185fe9d765e83e7c8MD51Carta comprovante vf.pdfCarta comprovante vf.pdfapplication/pdf8938344https://repositorio.ufscar.br/bitstream/ufscar/11806/2/Carta%20comprovante%20vf.pdfd1296fc988b37854f812d863eb261d71MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11806/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTTese - Murilo Amaral Fonseca.pdf.txtTese - Murilo Amaral Fonseca.pdf.txtExtracted texttext/plain212062https://repositorio.ufscar.br/bitstream/ufscar/11806/4/Tese%20-%20Murilo%20Amaral%20Fonseca.pdf.txt94321c9524ba0523504a64c27bb17c97MD54Carta comprovante vf.pdf.txtCarta comprovante vf.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/11806/5/Carta%20comprovante%20vf.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD55THUMBNAILTese - Murilo Amaral Fonseca.pdf.jpgTese - Murilo Amaral Fonseca.pdf.jpgIM Thumbnailimage/jpeg7712https://repositorio.ufscar.br/bitstream/ufscar/11806/6/Tese%20-%20Murilo%20Amaral%20Fonseca.pdf.jpg1bd12bbabaa60a3137f159908a3ec77fMD56Carta comprovante vf.pdf.jpgCarta comprovante vf.pdf.jpgIM Thumbnailimage/jpeg13569https://repositorio.ufscar.br/bitstream/ufscar/11806/7/Carta%20comprovante%20vf.pdf.jpgc01e1f0ad2682d65a1c3940b358b4c4fMD57ufscar/118062023-09-18 18:31:38.666oai:repositorio.ufscar.br:ufscar/11806TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:38Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
dc.title.alternative.eng.fl_str_mv Simultaneous saccharification and isomerization of dextrin in the production of fructose syrup by synergic action of magnetic CLEAs of amyloglucosidase and Sweetzyme®
title Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
spellingShingle Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
Fonseca, Murilo Amaral
Xarope rico em frutose
Sacarificação e isomerização simultânea
Agregados de enzima entrecruzados
Amiloglicosidase
Glicose isomerase
High fructose syrup
Simultaneous saccharification and isomerization
Cross-linked enzyme aggregate
Amyloglucosidase
Glucose isomerase
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
title_short Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
title_full Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
title_fullStr Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
title_full_unstemmed Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
title_sort Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®
author Fonseca, Murilo Amaral
author_facet Fonseca, Murilo Amaral
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2679414675992573
dc.contributor.author.fl_str_mv Fonseca, Murilo Amaral
dc.contributor.advisor1.fl_str_mv Tardioli, Paulo Waldir
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0808991927126468
dc.contributor.authorID.fl_str_mv 8acea0fa-04db-4085-bfdc-3e64ce84b575
contributor_str_mv Tardioli, Paulo Waldir
dc.subject.por.fl_str_mv Xarope rico em frutose
Sacarificação e isomerização simultânea
Agregados de enzima entrecruzados
Amiloglicosidase
Glicose isomerase
topic Xarope rico em frutose
Sacarificação e isomerização simultânea
Agregados de enzima entrecruzados
Amiloglicosidase
Glicose isomerase
High fructose syrup
Simultaneous saccharification and isomerization
Cross-linked enzyme aggregate
Amyloglucosidase
Glucose isomerase
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv High fructose syrup
Simultaneous saccharification and isomerization
Cross-linked enzyme aggregate
Amyloglucosidase
Glucose isomerase
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
description High fructose syrup is a sweetener widely used as a substitute for sucrose by the food and beverage industry. It has many advantages such as relative sweetness superior to sucrose, high solubility, crystallization resistance and humectant action. Its current industrial production is by enzymatic route basically occurring in three processes: liquefaction, saccharification and isomerization, by the action of the enzymes α-amylase, amyloglucosidase (AMG) and glucose isomerase (GI), respectively. Due to the fact that these enzymes are conducted under different conditions, all three processes are sequential, requiring time, equipment, and reagents for pH adjustment. Moreover, the enzymes α-amylase and amyloglucosidase are applied in a soluble form, limiting their use to batch operations. Due to its considerable industrial interest, glucose isomerase is marketed in its immobilized form. In the search for alternatives to increase productivity and efficiency of processes with lower operating costs, the aim of this research is to study the application of a simultaneous saccharification and isomerization process that could be operated repeatedly, reusing the biocatalysts employed. In order to develop this simultaneous multi-enzymatic process, initially it would be necessary to immobilize the AMG in order to make it insoluble and operationally more stable. The preparation of cross-linked enzyme aggregates (CLEA) is a simple, cost-effective and carrier-free technique capable of generating insoluble biocatalysts with high volumetric activity and improved stability. Its preparation consists of enzyme aggregation by precipitation and its subsequent cross-linking with a bifunctional agent. In this study, the CLEAs of AMG were prepared co-aggregated in the presence of polyethyleneimine (PEI) and/or starch, with aminated magnetic nanoparticles (MNPs) or bovine serum albumin (BSA), in order to improve the properties of the catalyst. The CLEAs prepared only with MNPs at different glutaraldehyde concentrations yielded a recovered activity of around 20%. The addition of starch or PEI increased the recovered activity around twofold (40%). Moreover, under the same conditions, AMG co-aggregated with BSA was also synthesized, yielding CLEAs with very similar recovered activity. Both CLEAs (co-aggregated with MNPs or BSA) were four times more stable than the soluble enzyme. These CLEAs were also evaluated in the hydrolysis of starch at 35% (w/v), achieving more than 95% starch-to-glucose conversion measured as Dextrose Equivalent (DE). Besides, both CLEAs could be reused for five cycles maintaining a DE of around 90%. Although both CLEAs had good properties, magnetic CLEAs could be more attractive because of their easy separation by an external magnetic field. Having the immobilized biocatalysts (AMG CLEA and GI) it was possible to work in a wider operational window, allowing the application of a factorial design with a central composite rotatable design, which was able to define an optimum pH and process temperature condition, as well as the best relation between the two enzymes. Simultaneous saccharification and isomerization from a dextrin solution 35% (w/v) reached a DE above 95%, with conversion yields around 48% of fructose at the end of 30 h of reaction. In addition, the catalysts could be reused for six consecutive cycles, maintaining conversion yields around 47% of fructose without loss of activity and with easy recovery of the biocatalysts. Furthermore, because they are of different natures (magnetic CLEA of amyloglucosidase and pellets of GI), if there is any inactivation of one of the biocatalysts, they could be easily separated and recharged individually.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-09T19:00:38Z
dc.date.available.fl_str_mv 2019-09-09T19:00:38Z
dc.date.issued.fl_str_mv 2019-07-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FONSECA, Murilo Amaral. Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®. 2019. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11806.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11806
identifier_str_mv FONSECA, Murilo Amaral. Sacarificação e isomerização simultâneas de dextrina na produção de xarope de frutose por ação sinérgica de CLEAs magnéticos de amiloglicosidase e Sweetzyme®. 2019. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11806.
url https://repositorio.ufscar.br/handle/ufscar/11806
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 57a91b28-06b2-4fc7-b127-2a5005569c49
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11806/1/Tese%20-%20Murilo%20Amaral%20Fonseca.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11806/2/Carta%20comprovante%20vf.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11806/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11806/4/Tese%20-%20Murilo%20Amaral%20Fonseca.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11806/5/Carta%20comprovante%20vf.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11806/6/Tese%20-%20Murilo%20Amaral%20Fonseca.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/11806/7/Carta%20comprovante%20vf.pdf.jpg
bitstream.checksum.fl_str_mv 9c8648933fdaf69185fe9d765e83e7c8
d1296fc988b37854f812d863eb261d71
ae0398b6f8b235e40ad82cba6c50031d
94321c9524ba0523504a64c27bb17c97
68b329da9893e34099c7d8ad5cb9c940
1bd12bbabaa60a3137f159908a3ec77f
c01e1f0ad2682d65a1c3940b358b4c4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136363690098688