Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação

Detalhes bibliográficos
Autor(a) principal: Castro, Jeyne Pricylla de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/17051
Resumo: This academic master's dissertation was devoted to the development of analytical methods for the determination of Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn in alloys and steels. The main purpose of the study was to present the Laser-induced Breakdown Spectroscopy (LIBS) as a viable alternative for the direct analysis of alloys and steels using chemometric tools to interpret the obtained data. Initially, the optimization of the parameters of the LIBS equipment was done using Doehlert design, varying the laser energy in 7 levels (30 to 80 mJ), delay time in 5 levels (0 to 2 μs) and spot size in 3 levels (50 to 150 μm). The chosen compromise condition was 60 mJ of energy, 0.9 μs of delay time and 100 μm of spot size, which were applied to 80 samples. The reference values of the analytes were obtained using the X-ray Fluorescence (XRF) technique for the construction of calibration models.To minimize signal variations and sample matrix differences, twelve normalization modes were tested and two calibration strategies were studied: multivariate calibration using Partial Least Squares (PLS) and univariate calibration using area and height of several emission lines. Thus, we search to identify the best mode of normalization, emission line and calibration strategy for each analyte. For most analytes, there was no significant difference between the normalization modes and also between the univariate and multivariate calibration. Classification models were applied to identify the samples in 3 different groups. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) and Partial-least squares-discriminant analysis PLS-DA were used in 3 different matrices: concentrations obtained using XRF, height and area of the LIBS emission lines (total of 57 emission lines). When comparing the models, some merit figures were evaluated, such as accuracy, sensitivity, false alarm rate and specificity. The classification model that obtained the best results was KNN. As a conclusion of the work, factorial design was useful to obtain an adequate analysis condition for all analytes and samples simultaneously, saving time and resources. Normalization modes were effective to minimize signal variations and differences in sample matrices. Univariate models were more satisfactory than multivariate models. In the case of classification models, it was possible to identify the samples, being the KNN model more efficient than the others.
id SCAR_6e1f54fc8f95730dd8e01448498b7f90
oai_identifier_str oai:repositorio.ufscar.br:ufscar/17051
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Castro, Jeyne Pricylla dePereira Filho, Edenir Rodrigueshttp://lattes.cnpq.br/3394181280355442http://lattes.cnpq.br/6327313723314696dae4232e-acd1-4a00-98d2-b5a72f763f992022-11-21T17:39:09Z2022-11-21T17:39:09Z2017-02-10CASTRO, Jeyne Pricylla de. Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação. 2017. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17051.https://repositorio.ufscar.br/handle/ufscar/17051This academic master's dissertation was devoted to the development of analytical methods for the determination of Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn in alloys and steels. The main purpose of the study was to present the Laser-induced Breakdown Spectroscopy (LIBS) as a viable alternative for the direct analysis of alloys and steels using chemometric tools to interpret the obtained data. Initially, the optimization of the parameters of the LIBS equipment was done using Doehlert design, varying the laser energy in 7 levels (30 to 80 mJ), delay time in 5 levels (0 to 2 μs) and spot size in 3 levels (50 to 150 μm). The chosen compromise condition was 60 mJ of energy, 0.9 μs of delay time and 100 μm of spot size, which were applied to 80 samples. The reference values of the analytes were obtained using the X-ray Fluorescence (XRF) technique for the construction of calibration models.To minimize signal variations and sample matrix differences, twelve normalization modes were tested and two calibration strategies were studied: multivariate calibration using Partial Least Squares (PLS) and univariate calibration using area and height of several emission lines. Thus, we search to identify the best mode of normalization, emission line and calibration strategy for each analyte. For most analytes, there was no significant difference between the normalization modes and also between the univariate and multivariate calibration. Classification models were applied to identify the samples in 3 different groups. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) and Partial-least squares-discriminant analysis PLS-DA were used in 3 different matrices: concentrations obtained using XRF, height and area of the LIBS emission lines (total of 57 emission lines). When comparing the models, some merit figures were evaluated, such as accuracy, sensitivity, false alarm rate and specificity. The classification model that obtained the best results was KNN. As a conclusion of the work, factorial design was useful to obtain an adequate analysis condition for all analytes and samples simultaneously, saving time and resources. Normalization modes were effective to minimize signal variations and differences in sample matrices. Univariate models were more satisfactory than multivariate models. In the case of classification models, it was possible to identify the samples, being the KNN model more efficient than the others.Esse trabalho foi dedicado ao desenvolvimento de métodos analíticos para a determinação de Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V e Zn em ligas metálicas. A principal proposta do estudo foi apresentar a Laser-induced breakdown spectroscopy (LIBS) como uma alternativa viável para a análise direta de amostras de ligas e aços utilizando ferramentas quimiométricas para interpretar os dados obtidos. Inicialmente, realizou-se a otimização dos parâmetros do equipamento LIBS utilizando planejamento fatorial do tipo Doehlert, variando a energia do laser em 7 níveis (30 a 80 mJ), delay time em 5 níveis (0 a 2 μs) e o spot size em 3 níveis (50 a 150 μm). A condição de compromisso escolhida foi 60 mJ de energia, 0,9 μs de delay time e 100 μm de spot size, a qual foi aplicada em 80 amostras. Os valores de referência dos analitos foram obtidos utilizando a técnica de Fluorescência de Raios-X (X-ray fluorescence, XRF) para a construção de modelos de calibração. Para minimizar as variações do sinal e as diferenças das matrizes das amostras, foram testados doze modos de normalizações e duas estratégias de calibração. Foram estudadas: calibração multivariada utilizando Partial Least Squares (PLS) e calibração univariada empregando área e altura de várias linhas de emissão. Assim, buscou-se a identificação do melhor modo de normalização, linha de emissão e estratégia de calibração para cada analito. Para a maioria dos analitos, não houve diferença significativa entre os modos de normalização e também entre a calibração univariada e multivariada. Além dos modelos de calibração, foram aplicados modelos de classificação para identificar as amostras em 3 grupos diferentes. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) e Partial-least squares-discriminant analysis PLS-DA foram utilizados em 3 matrizes diferentes: concentrações obtidas por XRF (valores de referência), área e altura das linhas de emissão da LIBS (total de 57 linhas de emissão). Ao comparar os modelos, foram avaliadas algumas figuras de mérito como exatidão, sensibilidade, taxa de falso alarme e especificidade. O modelo de classificação que obteve melhores resultados foi o KNN. Como conclusão do trabalho, o planejamento fatorial foi útil para obter uma condição adequada de análise para todos os analitos e amostras simultaneamente, economizando tempo e recursos. Os modos de normalização foram eficazes para minimizar as variações dos sinais e as diferenças nas matrizes das amostras. Os modelos univariados foram mais satisfatórios do que os multivariados. No caso dos modelos de classificação, foi possível identificar as amostras, sendo o modelo KNN mais eficiente do que os demais.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2014/22408-4porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessLigas metálicasModelos de classificaçãoPlanejamento de experimentosMetal alloysClassification modelsDesign of experimentsCIENCIAS EXATAS E DA TERRA::QUIMICAUso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificaçãoUse of laser-induced breakdown spectroscopy (LIBS) technique for direct analyses of metallic alloys: normalization strategies, uni and multivariate calibrations and classification modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600cc86aeec-dd0e-4a5e-9ae0-d3a038091433reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDISS_JPC.pdfDISS_JPC.pdfDissertaçãoapplication/pdf4245761https://repositorio.ufscar.br/bitstream/ufscar/17051/1/DISS_JPC.pdfe7f2f6e4400f227b1cfa623e451101e6MD51carta_comprovante_JPC_assinado.pdfcarta_comprovante_JPC_assinado.pdfCarta comprovanteapplication/pdf170121https://repositorio.ufscar.br/bitstream/ufscar/17051/3/carta_comprovante_JPC_assinado.pdf990bd91e6a8156b26ddb7e878894f297MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/17051/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDISS_JPC.pdf.txtDISS_JPC.pdf.txtExtracted texttext/plain205085https://repositorio.ufscar.br/bitstream/ufscar/17051/5/DISS_JPC.pdf.txtbfc3ab402ad999949078816ada6166ecMD55carta_comprovante_JPC_assinado.pdf.txtcarta_comprovante_JPC_assinado.pdf.txtExtracted texttext/plain1526https://repositorio.ufscar.br/bitstream/ufscar/17051/7/carta_comprovante_JPC_assinado.pdf.txtbd603a31c7fb6282c0ea9fa6c664479bMD57THUMBNAILDISS_JPC.pdf.jpgDISS_JPC.pdf.jpgIM Thumbnailimage/jpeg11101https://repositorio.ufscar.br/bitstream/ufscar/17051/6/DISS_JPC.pdf.jpg800592be747a3efd6ba4105801f323daMD56carta_comprovante_JPC_assinado.pdf.jpgcarta_comprovante_JPC_assinado.pdf.jpgIM Thumbnailimage/jpeg12676https://repositorio.ufscar.br/bitstream/ufscar/17051/8/carta_comprovante_JPC_assinado.pdf.jpg244a74645b0d46e60e0922190402e0ceMD58ufscar/170512023-09-18 18:32:25.835oai:repositorio.ufscar.br:ufscar/17051Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:25Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
dc.title.alternative.eng.fl_str_mv Use of laser-induced breakdown spectroscopy (LIBS) technique for direct analyses of metallic alloys: normalization strategies, uni and multivariate calibrations and classification models
title Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
spellingShingle Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
Castro, Jeyne Pricylla de
Ligas metálicas
Modelos de classificação
Planejamento de experimentos
Metal alloys
Classification models
Design of experiments
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
title_full Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
title_fullStr Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
title_full_unstemmed Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
title_sort Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
author Castro, Jeyne Pricylla de
author_facet Castro, Jeyne Pricylla de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6327313723314696
dc.contributor.author.fl_str_mv Castro, Jeyne Pricylla de
dc.contributor.advisor1.fl_str_mv Pereira Filho, Edenir Rodrigues
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3394181280355442
dc.contributor.authorID.fl_str_mv dae4232e-acd1-4a00-98d2-b5a72f763f99
contributor_str_mv Pereira Filho, Edenir Rodrigues
dc.subject.por.fl_str_mv Ligas metálicas
Modelos de classificação
Planejamento de experimentos
topic Ligas metálicas
Modelos de classificação
Planejamento de experimentos
Metal alloys
Classification models
Design of experiments
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Metal alloys
Classification models
Design of experiments
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description This academic master's dissertation was devoted to the development of analytical methods for the determination of Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn in alloys and steels. The main purpose of the study was to present the Laser-induced Breakdown Spectroscopy (LIBS) as a viable alternative for the direct analysis of alloys and steels using chemometric tools to interpret the obtained data. Initially, the optimization of the parameters of the LIBS equipment was done using Doehlert design, varying the laser energy in 7 levels (30 to 80 mJ), delay time in 5 levels (0 to 2 μs) and spot size in 3 levels (50 to 150 μm). The chosen compromise condition was 60 mJ of energy, 0.9 μs of delay time and 100 μm of spot size, which were applied to 80 samples. The reference values of the analytes were obtained using the X-ray Fluorescence (XRF) technique for the construction of calibration models.To minimize signal variations and sample matrix differences, twelve normalization modes were tested and two calibration strategies were studied: multivariate calibration using Partial Least Squares (PLS) and univariate calibration using area and height of several emission lines. Thus, we search to identify the best mode of normalization, emission line and calibration strategy for each analyte. For most analytes, there was no significant difference between the normalization modes and also between the univariate and multivariate calibration. Classification models were applied to identify the samples in 3 different groups. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) and Partial-least squares-discriminant analysis PLS-DA were used in 3 different matrices: concentrations obtained using XRF, height and area of the LIBS emission lines (total of 57 emission lines). When comparing the models, some merit figures were evaluated, such as accuracy, sensitivity, false alarm rate and specificity. The classification model that obtained the best results was KNN. As a conclusion of the work, factorial design was useful to obtain an adequate analysis condition for all analytes and samples simultaneously, saving time and resources. Normalization modes were effective to minimize signal variations and differences in sample matrices. Univariate models were more satisfactory than multivariate models. In the case of classification models, it was possible to identify the samples, being the KNN model more efficient than the others.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-10
dc.date.accessioned.fl_str_mv 2022-11-21T17:39:09Z
dc.date.available.fl_str_mv 2022-11-21T17:39:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CASTRO, Jeyne Pricylla de. Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação. 2017. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17051.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/17051
identifier_str_mv CASTRO, Jeyne Pricylla de. Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação. 2017. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17051.
url https://repositorio.ufscar.br/handle/ufscar/17051
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv cc86aeec-dd0e-4a5e-9ae0-d3a038091433
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/17051/1/DISS_JPC.pdf
https://repositorio.ufscar.br/bitstream/ufscar/17051/3/carta_comprovante_JPC_assinado.pdf
https://repositorio.ufscar.br/bitstream/ufscar/17051/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/17051/5/DISS_JPC.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/17051/7/carta_comprovante_JPC_assinado.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/17051/6/DISS_JPC.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/17051/8/carta_comprovante_JPC_assinado.pdf.jpg
bitstream.checksum.fl_str_mv e7f2f6e4400f227b1cfa623e451101e6
990bd91e6a8156b26ddb7e878894f297
e39d27027a6cc9cb039ad269a5db8e34
bfc3ab402ad999949078816ada6166ec
bd603a31c7fb6282c0ea9fa6c664479b
800592be747a3efd6ba4105801f323da
244a74645b0d46e60e0922190402e0ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715655919140864