Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/17051 |
Resumo: | This academic master's dissertation was devoted to the development of analytical methods for the determination of Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn in alloys and steels. The main purpose of the study was to present the Laser-induced Breakdown Spectroscopy (LIBS) as a viable alternative for the direct analysis of alloys and steels using chemometric tools to interpret the obtained data. Initially, the optimization of the parameters of the LIBS equipment was done using Doehlert design, varying the laser energy in 7 levels (30 to 80 mJ), delay time in 5 levels (0 to 2 μs) and spot size in 3 levels (50 to 150 μm). The chosen compromise condition was 60 mJ of energy, 0.9 μs of delay time and 100 μm of spot size, which were applied to 80 samples. The reference values of the analytes were obtained using the X-ray Fluorescence (XRF) technique for the construction of calibration models.To minimize signal variations and sample matrix differences, twelve normalization modes were tested and two calibration strategies were studied: multivariate calibration using Partial Least Squares (PLS) and univariate calibration using area and height of several emission lines. Thus, we search to identify the best mode of normalization, emission line and calibration strategy for each analyte. For most analytes, there was no significant difference between the normalization modes and also between the univariate and multivariate calibration. Classification models were applied to identify the samples in 3 different groups. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) and Partial-least squares-discriminant analysis PLS-DA were used in 3 different matrices: concentrations obtained using XRF, height and area of the LIBS emission lines (total of 57 emission lines). When comparing the models, some merit figures were evaluated, such as accuracy, sensitivity, false alarm rate and specificity. The classification model that obtained the best results was KNN. As a conclusion of the work, factorial design was useful to obtain an adequate analysis condition for all analytes and samples simultaneously, saving time and resources. Normalization modes were effective to minimize signal variations and differences in sample matrices. Univariate models were more satisfactory than multivariate models. In the case of classification models, it was possible to identify the samples, being the KNN model more efficient than the others. |
id |
SCAR_6e1f54fc8f95730dd8e01448498b7f90 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/17051 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Castro, Jeyne Pricylla dePereira Filho, Edenir Rodrigueshttp://lattes.cnpq.br/3394181280355442http://lattes.cnpq.br/6327313723314696dae4232e-acd1-4a00-98d2-b5a72f763f992022-11-21T17:39:09Z2022-11-21T17:39:09Z2017-02-10CASTRO, Jeyne Pricylla de. Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação. 2017. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17051.https://repositorio.ufscar.br/handle/ufscar/17051This academic master's dissertation was devoted to the development of analytical methods for the determination of Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn in alloys and steels. The main purpose of the study was to present the Laser-induced Breakdown Spectroscopy (LIBS) as a viable alternative for the direct analysis of alloys and steels using chemometric tools to interpret the obtained data. Initially, the optimization of the parameters of the LIBS equipment was done using Doehlert design, varying the laser energy in 7 levels (30 to 80 mJ), delay time in 5 levels (0 to 2 μs) and spot size in 3 levels (50 to 150 μm). The chosen compromise condition was 60 mJ of energy, 0.9 μs of delay time and 100 μm of spot size, which were applied to 80 samples. The reference values of the analytes were obtained using the X-ray Fluorescence (XRF) technique for the construction of calibration models.To minimize signal variations and sample matrix differences, twelve normalization modes were tested and two calibration strategies were studied: multivariate calibration using Partial Least Squares (PLS) and univariate calibration using area and height of several emission lines. Thus, we search to identify the best mode of normalization, emission line and calibration strategy for each analyte. For most analytes, there was no significant difference between the normalization modes and also between the univariate and multivariate calibration. Classification models were applied to identify the samples in 3 different groups. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) and Partial-least squares-discriminant analysis PLS-DA were used in 3 different matrices: concentrations obtained using XRF, height and area of the LIBS emission lines (total of 57 emission lines). When comparing the models, some merit figures were evaluated, such as accuracy, sensitivity, false alarm rate and specificity. The classification model that obtained the best results was KNN. As a conclusion of the work, factorial design was useful to obtain an adequate analysis condition for all analytes and samples simultaneously, saving time and resources. Normalization modes were effective to minimize signal variations and differences in sample matrices. Univariate models were more satisfactory than multivariate models. In the case of classification models, it was possible to identify the samples, being the KNN model more efficient than the others.Esse trabalho foi dedicado ao desenvolvimento de métodos analíticos para a determinação de Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V e Zn em ligas metálicas. A principal proposta do estudo foi apresentar a Laser-induced breakdown spectroscopy (LIBS) como uma alternativa viável para a análise direta de amostras de ligas e aços utilizando ferramentas quimiométricas para interpretar os dados obtidos. Inicialmente, realizou-se a otimização dos parâmetros do equipamento LIBS utilizando planejamento fatorial do tipo Doehlert, variando a energia do laser em 7 níveis (30 a 80 mJ), delay time em 5 níveis (0 a 2 μs) e o spot size em 3 níveis (50 a 150 μm). A condição de compromisso escolhida foi 60 mJ de energia, 0,9 μs de delay time e 100 μm de spot size, a qual foi aplicada em 80 amostras. Os valores de referência dos analitos foram obtidos utilizando a técnica de Fluorescência de Raios-X (X-ray fluorescence, XRF) para a construção de modelos de calibração. Para minimizar as variações do sinal e as diferenças das matrizes das amostras, foram testados doze modos de normalizações e duas estratégias de calibração. Foram estudadas: calibração multivariada utilizando Partial Least Squares (PLS) e calibração univariada empregando área e altura de várias linhas de emissão. Assim, buscou-se a identificação do melhor modo de normalização, linha de emissão e estratégia de calibração para cada analito. Para a maioria dos analitos, não houve diferença significativa entre os modos de normalização e também entre a calibração univariada e multivariada. Além dos modelos de calibração, foram aplicados modelos de classificação para identificar as amostras em 3 grupos diferentes. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) e Partial-least squares-discriminant analysis PLS-DA foram utilizados em 3 matrizes diferentes: concentrações obtidas por XRF (valores de referência), área e altura das linhas de emissão da LIBS (total de 57 linhas de emissão). Ao comparar os modelos, foram avaliadas algumas figuras de mérito como exatidão, sensibilidade, taxa de falso alarme e especificidade. O modelo de classificação que obteve melhores resultados foi o KNN. Como conclusão do trabalho, o planejamento fatorial foi útil para obter uma condição adequada de análise para todos os analitos e amostras simultaneamente, economizando tempo e recursos. Os modos de normalização foram eficazes para minimizar as variações dos sinais e as diferenças nas matrizes das amostras. Os modelos univariados foram mais satisfatórios do que os multivariados. No caso dos modelos de classificação, foi possível identificar as amostras, sendo o modelo KNN mais eficiente do que os demais.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2014/22408-4porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessLigas metálicasModelos de classificaçãoPlanejamento de experimentosMetal alloysClassification modelsDesign of experimentsCIENCIAS EXATAS E DA TERRA::QUIMICAUso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificaçãoUse of laser-induced breakdown spectroscopy (LIBS) technique for direct analyses of metallic alloys: normalization strategies, uni and multivariate calibrations and classification modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600cc86aeec-dd0e-4a5e-9ae0-d3a038091433reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDISS_JPC.pdfDISS_JPC.pdfDissertaçãoapplication/pdf4245761https://repositorio.ufscar.br/bitstream/ufscar/17051/1/DISS_JPC.pdfe7f2f6e4400f227b1cfa623e451101e6MD51carta_comprovante_JPC_assinado.pdfcarta_comprovante_JPC_assinado.pdfCarta comprovanteapplication/pdf170121https://repositorio.ufscar.br/bitstream/ufscar/17051/3/carta_comprovante_JPC_assinado.pdf990bd91e6a8156b26ddb7e878894f297MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/17051/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDISS_JPC.pdf.txtDISS_JPC.pdf.txtExtracted texttext/plain205085https://repositorio.ufscar.br/bitstream/ufscar/17051/5/DISS_JPC.pdf.txtbfc3ab402ad999949078816ada6166ecMD55carta_comprovante_JPC_assinado.pdf.txtcarta_comprovante_JPC_assinado.pdf.txtExtracted texttext/plain1526https://repositorio.ufscar.br/bitstream/ufscar/17051/7/carta_comprovante_JPC_assinado.pdf.txtbd603a31c7fb6282c0ea9fa6c664479bMD57THUMBNAILDISS_JPC.pdf.jpgDISS_JPC.pdf.jpgIM Thumbnailimage/jpeg11101https://repositorio.ufscar.br/bitstream/ufscar/17051/6/DISS_JPC.pdf.jpg800592be747a3efd6ba4105801f323daMD56carta_comprovante_JPC_assinado.pdf.jpgcarta_comprovante_JPC_assinado.pdf.jpgIM Thumbnailimage/jpeg12676https://repositorio.ufscar.br/bitstream/ufscar/17051/8/carta_comprovante_JPC_assinado.pdf.jpg244a74645b0d46e60e0922190402e0ceMD58ufscar/170512023-09-18 18:32:25.835oai:repositorio.ufscar.br:ufscar/17051Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:25Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
dc.title.alternative.eng.fl_str_mv |
Use of laser-induced breakdown spectroscopy (LIBS) technique for direct analyses of metallic alloys: normalization strategies, uni and multivariate calibrations and classification models |
title |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
spellingShingle |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação Castro, Jeyne Pricylla de Ligas metálicas Modelos de classificação Planejamento de experimentos Metal alloys Classification models Design of experiments CIENCIAS EXATAS E DA TERRA::QUIMICA |
title_short |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
title_full |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
title_fullStr |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
title_full_unstemmed |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
title_sort |
Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação |
author |
Castro, Jeyne Pricylla de |
author_facet |
Castro, Jeyne Pricylla de |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6327313723314696 |
dc.contributor.author.fl_str_mv |
Castro, Jeyne Pricylla de |
dc.contributor.advisor1.fl_str_mv |
Pereira Filho, Edenir Rodrigues |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3394181280355442 |
dc.contributor.authorID.fl_str_mv |
dae4232e-acd1-4a00-98d2-b5a72f763f99 |
contributor_str_mv |
Pereira Filho, Edenir Rodrigues |
dc.subject.por.fl_str_mv |
Ligas metálicas Modelos de classificação Planejamento de experimentos |
topic |
Ligas metálicas Modelos de classificação Planejamento de experimentos Metal alloys Classification models Design of experiments CIENCIAS EXATAS E DA TERRA::QUIMICA |
dc.subject.eng.fl_str_mv |
Metal alloys Classification models Design of experiments |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::QUIMICA |
description |
This academic master's dissertation was devoted to the development of analytical methods for the determination of Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn in alloys and steels. The main purpose of the study was to present the Laser-induced Breakdown Spectroscopy (LIBS) as a viable alternative for the direct analysis of alloys and steels using chemometric tools to interpret the obtained data. Initially, the optimization of the parameters of the LIBS equipment was done using Doehlert design, varying the laser energy in 7 levels (30 to 80 mJ), delay time in 5 levels (0 to 2 μs) and spot size in 3 levels (50 to 150 μm). The chosen compromise condition was 60 mJ of energy, 0.9 μs of delay time and 100 μm of spot size, which were applied to 80 samples. The reference values of the analytes were obtained using the X-ray Fluorescence (XRF) technique for the construction of calibration models.To minimize signal variations and sample matrix differences, twelve normalization modes were tested and two calibration strategies were studied: multivariate calibration using Partial Least Squares (PLS) and univariate calibration using area and height of several emission lines. Thus, we search to identify the best mode of normalization, emission line and calibration strategy for each analyte. For most analytes, there was no significant difference between the normalization modes and also between the univariate and multivariate calibration. Classification models were applied to identify the samples in 3 different groups. K-nearest neighbor (KNN), Soft independent modeling of class analogy (SIMCA) and Partial-least squares-discriminant analysis PLS-DA were used in 3 different matrices: concentrations obtained using XRF, height and area of the LIBS emission lines (total of 57 emission lines). When comparing the models, some merit figures were evaluated, such as accuracy, sensitivity, false alarm rate and specificity. The classification model that obtained the best results was KNN. As a conclusion of the work, factorial design was useful to obtain an adequate analysis condition for all analytes and samples simultaneously, saving time and resources. Normalization modes were effective to minimize signal variations and differences in sample matrices. Univariate models were more satisfactory than multivariate models. In the case of classification models, it was possible to identify the samples, being the KNN model more efficient than the others. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-02-10 |
dc.date.accessioned.fl_str_mv |
2022-11-21T17:39:09Z |
dc.date.available.fl_str_mv |
2022-11-21T17:39:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CASTRO, Jeyne Pricylla de. Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação. 2017. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17051. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/17051 |
identifier_str_mv |
CASTRO, Jeyne Pricylla de. Uso da técnica laser-induced breakdown spectroscopy (LIBS) para análise direta de ligas metálicas: estratégias de normalização, calibração univariada e multivariada e modelos de classificação. 2017. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17051. |
url |
https://repositorio.ufscar.br/handle/ufscar/17051 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
cc86aeec-dd0e-4a5e-9ae0-d3a038091433 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química - PPGQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/17051/1/DISS_JPC.pdf https://repositorio.ufscar.br/bitstream/ufscar/17051/3/carta_comprovante_JPC_assinado.pdf https://repositorio.ufscar.br/bitstream/ufscar/17051/4/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/17051/5/DISS_JPC.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/17051/7/carta_comprovante_JPC_assinado.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/17051/6/DISS_JPC.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/17051/8/carta_comprovante_JPC_assinado.pdf.jpg |
bitstream.checksum.fl_str_mv |
e7f2f6e4400f227b1cfa623e451101e6 990bd91e6a8156b26ddb7e878894f297 e39d27027a6cc9cb039ad269a5db8e34 bfc3ab402ad999949078816ada6166ec bd603a31c7fb6282c0ea9fa6c664479b 800592be747a3efd6ba4105801f323da 244a74645b0d46e60e0922190402e0ce |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715655919140864 |