Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica

Detalhes bibliográficos
Autor(a) principal: Perez, Gabriel Guariglia
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/10609
Resumo: Information about vegetation biophysical parameters can be used in many applications, and remote sensing is showing itself to be a good tool to obtain it. In this study we investigated the possibility of using Sentinel 2 images to estimate vegetation biophysical parameters measured in field and with LiDAR (Light Detection and Ranging). The study was conducted in areas covered by Atlantic Forest in the state of São Paulo (Brazil) using three Sentinel 2 images. Additionally, we used a Landsat-8/OLI image for temporal proximity with the LiDAR data, tested the effect of topographic correction on the images and made an analysis of leaf reflectance in lab. The analyzed field variables were height, DBH (Diameter at breast height), percentage of canopy cover, and number of individuals. The LiDAR variables were height of the first returns, height of the last returns and number of returns per pulse. A total of 26 variables were extracted for comparisons with the images through OLS (Ordinary Least Squares) and RF (Random Forest) regression models. These comparisons were made with single bands, the vegetation indices RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) and S2REP (Sentinel 2 Red Edge Position), and with all the possible rations between two bands. The results show that many biophysical parameters are related to the images (r² up to 0.62), and the topographic correction seems to have a positive effect in the estimates, especially for LiDAR derived variables. The best models generated with field data were regressions between multiple Sentinel 2 bands and tree height, canopy cover and biomass. For the LiDAR data, the results were in general better than with field data and also involved regressions with multiple Sentinel 2 bands in comparison with canopy height and cover. Among the images, the one that presented better relations with the biophysical parameters were Sentinel 2 image of December 26, 2016. The validation results of the LiDAR models show that they work in different areas of the same image in which they were trained but can only be applied in different images after an appropriate atmospheric correction. In general, vegetation indices did not show better results than individual bands. Among the bands, we highlight the role of B5 (705 nm, red-edge) for the success of many estimates, which is confirmed by the results of the analysis of leaf reflectance made in lab. For future studies, we recommend better investigation of wavelengths close to 705 nm and the potential of Sentinel 2 band 5. For the creation of models that can be used in different images, we recommend the use of level 2A Sentinel 2 imagens (surface reflectance), that will be available globally by the end of 2018. Finally, we also recommend to consider other variables such as classes of successional stages and the comparison of Sentinel 2 imagery with other phytophysiognomies.
id SCAR_7535b6e1acb8beee19b7bda5c5751020
oai_identifier_str oai:repositorio.ufscar.br:ufscar/10609
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Perez, Gabriel GuarigliaBourscheidt, Vandoirhttp://lattes.cnpq.br/8224261649535795Lopes, Luciano Elsinorhttp://lattes.cnpq.br/6504793265492545http://lattes.cnpq.br/12877350432436744da14811-9f2e-4ca4-be10-95d2a33be7f32018-10-24T19:03:37Z2018-10-24T19:03:37Z2018-08-22PEREZ, Gabriel Guariglia. Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica. 2018. Dissertação (Mestrado em Ciências Ambientais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10609.https://repositorio.ufscar.br/handle/ufscar/10609Information about vegetation biophysical parameters can be used in many applications, and remote sensing is showing itself to be a good tool to obtain it. In this study we investigated the possibility of using Sentinel 2 images to estimate vegetation biophysical parameters measured in field and with LiDAR (Light Detection and Ranging). The study was conducted in areas covered by Atlantic Forest in the state of São Paulo (Brazil) using three Sentinel 2 images. Additionally, we used a Landsat-8/OLI image for temporal proximity with the LiDAR data, tested the effect of topographic correction on the images and made an analysis of leaf reflectance in lab. The analyzed field variables were height, DBH (Diameter at breast height), percentage of canopy cover, and number of individuals. The LiDAR variables were height of the first returns, height of the last returns and number of returns per pulse. A total of 26 variables were extracted for comparisons with the images through OLS (Ordinary Least Squares) and RF (Random Forest) regression models. These comparisons were made with single bands, the vegetation indices RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) and S2REP (Sentinel 2 Red Edge Position), and with all the possible rations between two bands. The results show that many biophysical parameters are related to the images (r² up to 0.62), and the topographic correction seems to have a positive effect in the estimates, especially for LiDAR derived variables. The best models generated with field data were regressions between multiple Sentinel 2 bands and tree height, canopy cover and biomass. For the LiDAR data, the results were in general better than with field data and also involved regressions with multiple Sentinel 2 bands in comparison with canopy height and cover. Among the images, the one that presented better relations with the biophysical parameters were Sentinel 2 image of December 26, 2016. The validation results of the LiDAR models show that they work in different areas of the same image in which they were trained but can only be applied in different images after an appropriate atmospheric correction. In general, vegetation indices did not show better results than individual bands. Among the bands, we highlight the role of B5 (705 nm, red-edge) for the success of many estimates, which is confirmed by the results of the analysis of leaf reflectance made in lab. For future studies, we recommend better investigation of wavelengths close to 705 nm and the potential of Sentinel 2 band 5. For the creation of models that can be used in different images, we recommend the use of level 2A Sentinel 2 imagens (surface reflectance), that will be available globally by the end of 2018. Finally, we also recommend to consider other variables such as classes of successional stages and the comparison of Sentinel 2 imagery with other phytophysiognomies.Informações sobre parâmetros biofísicos da vegetação podem ser usadas para as mais diversas aplicações, e o sensoriamento remoto vem se mostrando uma boa ferramenta para obtê-las. Neste estudo foi investigada a possibilidade de usar imagens do Sentinel 2 para estimar parâmetros biofísicos da vegetação medidos em campo e com LiDAR (Light Detection and Ranging). O trabalho foi feito em áreas de Mata Atlântica no estado de São Paulo (Brasil) usando três imagens do Sentinel 2. Adicionalmente, foi utilizada uma imagem Landsat-8/OLI por proximidade temporal com os dados LiDAR, testado o efeito da aplicação de correção topográfica nas imagens e feita uma análise de espectros de reflectância de folhas em laboratório. As variáveis de campo analisadas foram altura, DAP (Diâmetro à Altura do Peito), porcentagem de cobertura e número de indivíduos. As variáveis LiDAR foram altura dos primeiros ecos, altura dos últimos ecos e quantidade de ecos por pulso. Um total de 26 variáveis foram extraídas para comparação com as imagens em modelos de regressão OLS (Ordinary Least Squares) e RF (Random Forest). Essas comparações foram feitas com as bandas de forma individual, com os índices de vegetação RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) e S2REP (Sentinel 2 Red Edge Position), e com todas as razões possíveis entre duas bandas. Os resultados mostram que muitos dos parâmetros biofísicos tem relação com as imagens (r² de até 0,62), e a correção topográfica parece ter efeito positivo nas estimativas, principalmente das variáveis derivadas de LiDAR. Os melhores modelos gerados para os dados de campo foram regressões múltiplas entre bandas do Sentinel 2 e a altura das árvores, cobertura do dossel e biomassa. Para os dados LiDAR, os resultados foram melhores que os de campo, principalmente em regressões múltiplas entre bandas do Sentinel 2 e altura e cobertura do dossel. Dentre as imagens, a que apresentou melhores relações com os parâmetros biofísicos foi a de 26 de dezembro de 2016 do Sentinel 2. Os resultados da validação dos modelos LiDAR mostram que eles podem ser usados em áreas diferentes da mesma imagem em que foram treinados e também podem ser usados em imagens diferentes desde que seja aplicada uma correção atmosférica apropriada. De maneira geral, índices de vegetação não tiveram resultados melhores que as bandas individuais. Dentre as bandas, destaca-se o papel de B5 (705 nm, red-edge) no sucesso dessas estimativas, o que é confirmado pelos resultados da análise de espectros de reflectância feita em laboratório. Para trabalhos futuros, recomenda-se investigar melhor o comprimento de onda próximo a 705 nm e o potencial da banda 5 do Sentinel 2. Para a criação de modelos que possam ser usados em outras imagens, recomenda-se a utilização de imagens do Sentinel 2 em nível 2A (reflectância de superfície), que estarão disponíveis globalmente até o fim de 2018. Por fim, recomenda-se considerar outras variáveis, como classes de estágio sucessional, e a comparação das imagens com outras fitofisionomias.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciências Ambientais - PPGCAmUFSCarLiDARSensoriamento remotoEstrutura da vegetaçãoRemote sensingVegetation structureCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRESCIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTOCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZAUso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata AtlânticaUse of Sentinel 2 images in estimates of biophysical parameters of vegetation in Atlantic Forest Areasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600de1c9beb-f876-49e3-bfa4-4ed1b055038dinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Versão Final.pdfDissertação Versão Final.pdfapplication/pdf8061085https://repositorio.ufscar.br/bitstream/ufscar/10609/1/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf3caec55995a0f73fb6aac4de0834f8abMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/10609/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTDissertação Versão Final.pdf.txtDissertação Versão Final.pdf.txtExtracted texttext/plain236064https://repositorio.ufscar.br/bitstream/ufscar/10609/4/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.txt6368fa9ac2bc49602cda7d380e0187bcMD54THUMBNAILDissertação Versão Final.pdf.jpgDissertação Versão Final.pdf.jpgIM Thumbnailimage/jpeg6894https://repositorio.ufscar.br/bitstream/ufscar/10609/5/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.jpgef7d6344e584ad1f2a1481cd42e7fa52MD55ufscar/106092023-09-18 18:31:17.489oai:repositorio.ufscar.br:ufscar/10609TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:17Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
dc.title.alternative.eng.fl_str_mv Use of Sentinel 2 images in estimates of biophysical parameters of vegetation in Atlantic Forest Areas
title Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
spellingShingle Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
Perez, Gabriel Guariglia
LiDAR
Sensoriamento remoto
Estrutura da vegetação
Remote sensing
Vegetation structure
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRES
CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA
title_short Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
title_full Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
title_fullStr Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
title_full_unstemmed Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
title_sort Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
author Perez, Gabriel Guariglia
author_facet Perez, Gabriel Guariglia
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1287735043243674
dc.contributor.author.fl_str_mv Perez, Gabriel Guariglia
dc.contributor.advisor1.fl_str_mv Bourscheidt, Vandoir
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8224261649535795
dc.contributor.advisor-co1.fl_str_mv Lopes, Luciano Elsinor
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6504793265492545
dc.contributor.authorID.fl_str_mv 4da14811-9f2e-4ca4-be10-95d2a33be7f3
contributor_str_mv Bourscheidt, Vandoir
Lopes, Luciano Elsinor
dc.subject.por.fl_str_mv LiDAR
Sensoriamento remoto
Estrutura da vegetação
topic LiDAR
Sensoriamento remoto
Estrutura da vegetação
Remote sensing
Vegetation structure
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRES
CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA
dc.subject.eng.fl_str_mv Remote sensing
Vegetation structure
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRES
CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA
description Information about vegetation biophysical parameters can be used in many applications, and remote sensing is showing itself to be a good tool to obtain it. In this study we investigated the possibility of using Sentinel 2 images to estimate vegetation biophysical parameters measured in field and with LiDAR (Light Detection and Ranging). The study was conducted in areas covered by Atlantic Forest in the state of São Paulo (Brazil) using three Sentinel 2 images. Additionally, we used a Landsat-8/OLI image for temporal proximity with the LiDAR data, tested the effect of topographic correction on the images and made an analysis of leaf reflectance in lab. The analyzed field variables were height, DBH (Diameter at breast height), percentage of canopy cover, and number of individuals. The LiDAR variables were height of the first returns, height of the last returns and number of returns per pulse. A total of 26 variables were extracted for comparisons with the images through OLS (Ordinary Least Squares) and RF (Random Forest) regression models. These comparisons were made with single bands, the vegetation indices RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) and S2REP (Sentinel 2 Red Edge Position), and with all the possible rations between two bands. The results show that many biophysical parameters are related to the images (r² up to 0.62), and the topographic correction seems to have a positive effect in the estimates, especially for LiDAR derived variables. The best models generated with field data were regressions between multiple Sentinel 2 bands and tree height, canopy cover and biomass. For the LiDAR data, the results were in general better than with field data and also involved regressions with multiple Sentinel 2 bands in comparison with canopy height and cover. Among the images, the one that presented better relations with the biophysical parameters were Sentinel 2 image of December 26, 2016. The validation results of the LiDAR models show that they work in different areas of the same image in which they were trained but can only be applied in different images after an appropriate atmospheric correction. In general, vegetation indices did not show better results than individual bands. Among the bands, we highlight the role of B5 (705 nm, red-edge) for the success of many estimates, which is confirmed by the results of the analysis of leaf reflectance made in lab. For future studies, we recommend better investigation of wavelengths close to 705 nm and the potential of Sentinel 2 band 5. For the creation of models that can be used in different images, we recommend the use of level 2A Sentinel 2 imagens (surface reflectance), that will be available globally by the end of 2018. Finally, we also recommend to consider other variables such as classes of successional stages and the comparison of Sentinel 2 imagery with other phytophysiognomies.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-10-24T19:03:37Z
dc.date.available.fl_str_mv 2018-10-24T19:03:37Z
dc.date.issued.fl_str_mv 2018-08-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREZ, Gabriel Guariglia. Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica. 2018. Dissertação (Mestrado em Ciências Ambientais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10609.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/10609
identifier_str_mv PEREZ, Gabriel Guariglia. Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica. 2018. Dissertação (Mestrado em Ciências Ambientais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10609.
url https://repositorio.ufscar.br/handle/ufscar/10609
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv de1c9beb-f876-49e3-bfa4-4ed1b055038d
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Ambientais - PPGCAm
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/10609/1/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf
https://repositorio.ufscar.br/bitstream/ufscar/10609/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/10609/4/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/10609/5/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.jpg
bitstream.checksum.fl_str_mv 3caec55995a0f73fb6aac4de0834f8ab
ae0398b6f8b235e40ad82cba6c50031d
6368fa9ac2bc49602cda7d380e0187bc
ef7d6344e584ad1f2a1481cd42e7fa52
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715596149260288