Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/10609 |
Resumo: | Information about vegetation biophysical parameters can be used in many applications, and remote sensing is showing itself to be a good tool to obtain it. In this study we investigated the possibility of using Sentinel 2 images to estimate vegetation biophysical parameters measured in field and with LiDAR (Light Detection and Ranging). The study was conducted in areas covered by Atlantic Forest in the state of São Paulo (Brazil) using three Sentinel 2 images. Additionally, we used a Landsat-8/OLI image for temporal proximity with the LiDAR data, tested the effect of topographic correction on the images and made an analysis of leaf reflectance in lab. The analyzed field variables were height, DBH (Diameter at breast height), percentage of canopy cover, and number of individuals. The LiDAR variables were height of the first returns, height of the last returns and number of returns per pulse. A total of 26 variables were extracted for comparisons with the images through OLS (Ordinary Least Squares) and RF (Random Forest) regression models. These comparisons were made with single bands, the vegetation indices RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) and S2REP (Sentinel 2 Red Edge Position), and with all the possible rations between two bands. The results show that many biophysical parameters are related to the images (r² up to 0.62), and the topographic correction seems to have a positive effect in the estimates, especially for LiDAR derived variables. The best models generated with field data were regressions between multiple Sentinel 2 bands and tree height, canopy cover and biomass. For the LiDAR data, the results were in general better than with field data and also involved regressions with multiple Sentinel 2 bands in comparison with canopy height and cover. Among the images, the one that presented better relations with the biophysical parameters were Sentinel 2 image of December 26, 2016. The validation results of the LiDAR models show that they work in different areas of the same image in which they were trained but can only be applied in different images after an appropriate atmospheric correction. In general, vegetation indices did not show better results than individual bands. Among the bands, we highlight the role of B5 (705 nm, red-edge) for the success of many estimates, which is confirmed by the results of the analysis of leaf reflectance made in lab. For future studies, we recommend better investigation of wavelengths close to 705 nm and the potential of Sentinel 2 band 5. For the creation of models that can be used in different images, we recommend the use of level 2A Sentinel 2 imagens (surface reflectance), that will be available globally by the end of 2018. Finally, we also recommend to consider other variables such as classes of successional stages and the comparison of Sentinel 2 imagery with other phytophysiognomies. |
id |
SCAR_7535b6e1acb8beee19b7bda5c5751020 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/10609 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Perez, Gabriel GuarigliaBourscheidt, Vandoirhttp://lattes.cnpq.br/8224261649535795Lopes, Luciano Elsinorhttp://lattes.cnpq.br/6504793265492545http://lattes.cnpq.br/12877350432436744da14811-9f2e-4ca4-be10-95d2a33be7f32018-10-24T19:03:37Z2018-10-24T19:03:37Z2018-08-22PEREZ, Gabriel Guariglia. Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica. 2018. Dissertação (Mestrado em Ciências Ambientais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10609.https://repositorio.ufscar.br/handle/ufscar/10609Information about vegetation biophysical parameters can be used in many applications, and remote sensing is showing itself to be a good tool to obtain it. In this study we investigated the possibility of using Sentinel 2 images to estimate vegetation biophysical parameters measured in field and with LiDAR (Light Detection and Ranging). The study was conducted in areas covered by Atlantic Forest in the state of São Paulo (Brazil) using three Sentinel 2 images. Additionally, we used a Landsat-8/OLI image for temporal proximity with the LiDAR data, tested the effect of topographic correction on the images and made an analysis of leaf reflectance in lab. The analyzed field variables were height, DBH (Diameter at breast height), percentage of canopy cover, and number of individuals. The LiDAR variables were height of the first returns, height of the last returns and number of returns per pulse. A total of 26 variables were extracted for comparisons with the images through OLS (Ordinary Least Squares) and RF (Random Forest) regression models. These comparisons were made with single bands, the vegetation indices RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) and S2REP (Sentinel 2 Red Edge Position), and with all the possible rations between two bands. The results show that many biophysical parameters are related to the images (r² up to 0.62), and the topographic correction seems to have a positive effect in the estimates, especially for LiDAR derived variables. The best models generated with field data were regressions between multiple Sentinel 2 bands and tree height, canopy cover and biomass. For the LiDAR data, the results were in general better than with field data and also involved regressions with multiple Sentinel 2 bands in comparison with canopy height and cover. Among the images, the one that presented better relations with the biophysical parameters were Sentinel 2 image of December 26, 2016. The validation results of the LiDAR models show that they work in different areas of the same image in which they were trained but can only be applied in different images after an appropriate atmospheric correction. In general, vegetation indices did not show better results than individual bands. Among the bands, we highlight the role of B5 (705 nm, red-edge) for the success of many estimates, which is confirmed by the results of the analysis of leaf reflectance made in lab. For future studies, we recommend better investigation of wavelengths close to 705 nm and the potential of Sentinel 2 band 5. For the creation of models that can be used in different images, we recommend the use of level 2A Sentinel 2 imagens (surface reflectance), that will be available globally by the end of 2018. Finally, we also recommend to consider other variables such as classes of successional stages and the comparison of Sentinel 2 imagery with other phytophysiognomies.Informações sobre parâmetros biofísicos da vegetação podem ser usadas para as mais diversas aplicações, e o sensoriamento remoto vem se mostrando uma boa ferramenta para obtê-las. Neste estudo foi investigada a possibilidade de usar imagens do Sentinel 2 para estimar parâmetros biofísicos da vegetação medidos em campo e com LiDAR (Light Detection and Ranging). O trabalho foi feito em áreas de Mata Atlântica no estado de São Paulo (Brasil) usando três imagens do Sentinel 2. Adicionalmente, foi utilizada uma imagem Landsat-8/OLI por proximidade temporal com os dados LiDAR, testado o efeito da aplicação de correção topográfica nas imagens e feita uma análise de espectros de reflectância de folhas em laboratório. As variáveis de campo analisadas foram altura, DAP (Diâmetro à Altura do Peito), porcentagem de cobertura e número de indivíduos. As variáveis LiDAR foram altura dos primeiros ecos, altura dos últimos ecos e quantidade de ecos por pulso. Um total de 26 variáveis foram extraídas para comparação com as imagens em modelos de regressão OLS (Ordinary Least Squares) e RF (Random Forest). Essas comparações foram feitas com as bandas de forma individual, com os índices de vegetação RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) e S2REP (Sentinel 2 Red Edge Position), e com todas as razões possíveis entre duas bandas. Os resultados mostram que muitos dos parâmetros biofísicos tem relação com as imagens (r² de até 0,62), e a correção topográfica parece ter efeito positivo nas estimativas, principalmente das variáveis derivadas de LiDAR. Os melhores modelos gerados para os dados de campo foram regressões múltiplas entre bandas do Sentinel 2 e a altura das árvores, cobertura do dossel e biomassa. Para os dados LiDAR, os resultados foram melhores que os de campo, principalmente em regressões múltiplas entre bandas do Sentinel 2 e altura e cobertura do dossel. Dentre as imagens, a que apresentou melhores relações com os parâmetros biofísicos foi a de 26 de dezembro de 2016 do Sentinel 2. Os resultados da validação dos modelos LiDAR mostram que eles podem ser usados em áreas diferentes da mesma imagem em que foram treinados e também podem ser usados em imagens diferentes desde que seja aplicada uma correção atmosférica apropriada. De maneira geral, índices de vegetação não tiveram resultados melhores que as bandas individuais. Dentre as bandas, destaca-se o papel de B5 (705 nm, red-edge) no sucesso dessas estimativas, o que é confirmado pelos resultados da análise de espectros de reflectância feita em laboratório. Para trabalhos futuros, recomenda-se investigar melhor o comprimento de onda próximo a 705 nm e o potencial da banda 5 do Sentinel 2. Para a criação de modelos que possam ser usados em outras imagens, recomenda-se a utilização de imagens do Sentinel 2 em nível 2A (reflectância de superfície), que estarão disponíveis globalmente até o fim de 2018. Por fim, recomenda-se considerar outras variáveis, como classes de estágio sucessional, e a comparação das imagens com outras fitofisionomias.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciências Ambientais - PPGCAmUFSCarLiDARSensoriamento remotoEstrutura da vegetaçãoRemote sensingVegetation structureCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRESCIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTOCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZAUso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata AtlânticaUse of Sentinel 2 images in estimates of biophysical parameters of vegetation in Atlantic Forest Areasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600de1c9beb-f876-49e3-bfa4-4ed1b055038dinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Versão Final.pdfDissertação Versão Final.pdfapplication/pdf8061085https://repositorio.ufscar.br/bitstream/ufscar/10609/1/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf3caec55995a0f73fb6aac4de0834f8abMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/10609/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTDissertação Versão Final.pdf.txtDissertação Versão Final.pdf.txtExtracted texttext/plain236064https://repositorio.ufscar.br/bitstream/ufscar/10609/4/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.txt6368fa9ac2bc49602cda7d380e0187bcMD54THUMBNAILDissertação Versão Final.pdf.jpgDissertação Versão Final.pdf.jpgIM Thumbnailimage/jpeg6894https://repositorio.ufscar.br/bitstream/ufscar/10609/5/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.jpgef7d6344e584ad1f2a1481cd42e7fa52MD55ufscar/106092023-09-18 18:31:17.489oai:repositorio.ufscar.br:ufscar/10609TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:17Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
dc.title.alternative.eng.fl_str_mv |
Use of Sentinel 2 images in estimates of biophysical parameters of vegetation in Atlantic Forest Areas |
title |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
spellingShingle |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica Perez, Gabriel Guariglia LiDAR Sensoriamento remoto Estrutura da vegetação Remote sensing Vegetation structure CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRES CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA |
title_short |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
title_full |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
title_fullStr |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
title_full_unstemmed |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
title_sort |
Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica |
author |
Perez, Gabriel Guariglia |
author_facet |
Perez, Gabriel Guariglia |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/1287735043243674 |
dc.contributor.author.fl_str_mv |
Perez, Gabriel Guariglia |
dc.contributor.advisor1.fl_str_mv |
Bourscheidt, Vandoir |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8224261649535795 |
dc.contributor.advisor-co1.fl_str_mv |
Lopes, Luciano Elsinor |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6504793265492545 |
dc.contributor.authorID.fl_str_mv |
4da14811-9f2e-4ca4-be10-95d2a33be7f3 |
contributor_str_mv |
Bourscheidt, Vandoir Lopes, Luciano Elsinor |
dc.subject.por.fl_str_mv |
LiDAR Sensoriamento remoto Estrutura da vegetação |
topic |
LiDAR Sensoriamento remoto Estrutura da vegetação Remote sensing Vegetation structure CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRES CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA |
dc.subject.eng.fl_str_mv |
Remote sensing Vegetation structure |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA::CONSERVACAO DE AREAS SILVESTRES CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::CONSERVACAO DA NATUREZA |
description |
Information about vegetation biophysical parameters can be used in many applications, and remote sensing is showing itself to be a good tool to obtain it. In this study we investigated the possibility of using Sentinel 2 images to estimate vegetation biophysical parameters measured in field and with LiDAR (Light Detection and Ranging). The study was conducted in areas covered by Atlantic Forest in the state of São Paulo (Brazil) using three Sentinel 2 images. Additionally, we used a Landsat-8/OLI image for temporal proximity with the LiDAR data, tested the effect of topographic correction on the images and made an analysis of leaf reflectance in lab. The analyzed field variables were height, DBH (Diameter at breast height), percentage of canopy cover, and number of individuals. The LiDAR variables were height of the first returns, height of the last returns and number of returns per pulse. A total of 26 variables were extracted for comparisons with the images through OLS (Ordinary Least Squares) and RF (Random Forest) regression models. These comparisons were made with single bands, the vegetation indices RVI (Ratio Vegetation Index), NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), NDWI (Normalized Difference Water Index), NDI45 Normalized Difference Index B4 and B5), IRECI (Inverted Red-Edge Chlorophyll Index) and S2REP (Sentinel 2 Red Edge Position), and with all the possible rations between two bands. The results show that many biophysical parameters are related to the images (r² up to 0.62), and the topographic correction seems to have a positive effect in the estimates, especially for LiDAR derived variables. The best models generated with field data were regressions between multiple Sentinel 2 bands and tree height, canopy cover and biomass. For the LiDAR data, the results were in general better than with field data and also involved regressions with multiple Sentinel 2 bands in comparison with canopy height and cover. Among the images, the one that presented better relations with the biophysical parameters were Sentinel 2 image of December 26, 2016. The validation results of the LiDAR models show that they work in different areas of the same image in which they were trained but can only be applied in different images after an appropriate atmospheric correction. In general, vegetation indices did not show better results than individual bands. Among the bands, we highlight the role of B5 (705 nm, red-edge) for the success of many estimates, which is confirmed by the results of the analysis of leaf reflectance made in lab. For future studies, we recommend better investigation of wavelengths close to 705 nm and the potential of Sentinel 2 band 5. For the creation of models that can be used in different images, we recommend the use of level 2A Sentinel 2 imagens (surface reflectance), that will be available globally by the end of 2018. Finally, we also recommend to consider other variables such as classes of successional stages and the comparison of Sentinel 2 imagery with other phytophysiognomies. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-10-24T19:03:37Z |
dc.date.available.fl_str_mv |
2018-10-24T19:03:37Z |
dc.date.issued.fl_str_mv |
2018-08-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PEREZ, Gabriel Guariglia. Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica. 2018. Dissertação (Mestrado em Ciências Ambientais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10609. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/10609 |
identifier_str_mv |
PEREZ, Gabriel Guariglia. Uso de imagens do Sentinel 2 na estimativa de parâmetros biofísicos da vegetação em áreas de Mata Atlântica. 2018. Dissertação (Mestrado em Ciências Ambientais) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10609. |
url |
https://repositorio.ufscar.br/handle/ufscar/10609 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
de1c9beb-f876-49e3-bfa4-4ed1b055038d |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Ambientais - PPGCAm |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/10609/1/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf https://repositorio.ufscar.br/bitstream/ufscar/10609/3/license.txt https://repositorio.ufscar.br/bitstream/ufscar/10609/4/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/10609/5/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final.pdf.jpg |
bitstream.checksum.fl_str_mv |
3caec55995a0f73fb6aac4de0834f8ab ae0398b6f8b235e40ad82cba6c50031d 6368fa9ac2bc49602cda7d380e0187bc ef7d6344e584ad1f2a1481cd42e7fa52 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715596149260288 |