Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível

Detalhes bibliográficos
Autor(a) principal: Lorevice, Marcos Vinicius
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7516
Resumo: Petroleumderived packaging are neither renewable nor biodegradable. Based on it, recent studies have been focused in biopolymer-based packaging, such as in polysaccharides (e.g., pectin and chitosan), due to their good renewable and biodegradable characteristics. However, their physical-chemical properties (mechanical, thermal, and barrier) are urged to be improved. The addition of nanoparticles (NPS) as reinforcing agents has been shown as a feasible means of improving such properties. The goal of this work was the development of pectin (PEC) (low and high methoxyl degree, MD)-based nanocomposite films incorporated with chitosan (CS) and poly(ε-caprolactone) (PCL) nanoparticles (CSNP and PCLNP, respectively). CSNP were obtained by ionotropic gelation whereas PCLNP were obtained by the nanoprecipitation method. All NPS were characterized as to their morphology, size, and zeta potential. The CSNP size was nearly 100 nm and their zeta potential was close to + 20 mV, results which are in agreement whit CS cationic properties and indicated good suspension stability. PCLNP presented size values near to 130 nm and zeta potential of approximately - 20 mV because the surfactant is spread over PCLNP surface. PCLNP showed a smaller polydispersity index than CSNP, indicating a more homogenous suspension. This was also observed through electron microscopy of PCLNP. The nanocomposite films were obtained by casting from PEC/NPS film-forming solutions. The nanocomposite films’ mechanical, thermal, and water barrier properties were studied. The MD did not affect the analyzed properties of PECbased films. The addition of NPS (CSNP and PCLNP) increased the tensile strength and degradation temperature of all PEC-based films, suggesting good interactions between PEC network and NPS surface. The addition of PCLNP to low MD PEC films improved the tensile strength in more than 100%. Although, NPS did not change the water vapor permeability of the PEC-based nanocomposite films, which could be related with PEC good water solubility and NPS affinity to water molecules. These results indicate a novel material with physical-chemical properties desirable for food packaging applications, making this product competitive when compared with petroleum-based packaging.
id SCAR_851992206857829ee1cbcb146e7f2e76
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7516
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Lorevice, Marcos ViniciusMattoso, Luiz Henrique Capparellihttp://lattes.cnpq.br/5839043594908917http://lattes.cnpq.br/29755048863570307f34f380-0049-4852-a84a-654d01c1c0572016-09-27T19:39:20Z2016-09-27T19:39:20Z2015-03-27LOREVICE, Marcos Vinicius. Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível. 2015. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7516.https://repositorio.ufscar.br/handle/ufscar/7516Petroleumderived packaging are neither renewable nor biodegradable. Based on it, recent studies have been focused in biopolymer-based packaging, such as in polysaccharides (e.g., pectin and chitosan), due to their good renewable and biodegradable characteristics. However, their physical-chemical properties (mechanical, thermal, and barrier) are urged to be improved. The addition of nanoparticles (NPS) as reinforcing agents has been shown as a feasible means of improving such properties. The goal of this work was the development of pectin (PEC) (low and high methoxyl degree, MD)-based nanocomposite films incorporated with chitosan (CS) and poly(ε-caprolactone) (PCL) nanoparticles (CSNP and PCLNP, respectively). CSNP were obtained by ionotropic gelation whereas PCLNP were obtained by the nanoprecipitation method. All NPS were characterized as to their morphology, size, and zeta potential. The CSNP size was nearly 100 nm and their zeta potential was close to + 20 mV, results which are in agreement whit CS cationic properties and indicated good suspension stability. PCLNP presented size values near to 130 nm and zeta potential of approximately - 20 mV because the surfactant is spread over PCLNP surface. PCLNP showed a smaller polydispersity index than CSNP, indicating a more homogenous suspension. This was also observed through electron microscopy of PCLNP. The nanocomposite films were obtained by casting from PEC/NPS film-forming solutions. The nanocomposite films’ mechanical, thermal, and water barrier properties were studied. The MD did not affect the analyzed properties of PECbased films. The addition of NPS (CSNP and PCLNP) increased the tensile strength and degradation temperature of all PEC-based films, suggesting good interactions between PEC network and NPS surface. The addition of PCLNP to low MD PEC films improved the tensile strength in more than 100%. Although, NPS did not change the water vapor permeability of the PEC-based nanocomposite films, which could be related with PEC good water solubility and NPS affinity to water molecules. These results indicate a novel material with physical-chemical properties desirable for food packaging applications, making this product competitive when compared with petroleum-based packaging.As embalagens produzidas a partir de polímeros petroquímicos possuem limitações relativas biodegradabilidade e sua fonte de origem não renovável. Derivados de polímeros naturais, como polissacarídeos, são biodegradáveis e de fonte renováveis, demonstrando-se como uma alternativa na fabricação de embalagens. Contudo, o desafio está em aprimorar as propriedades físicas dessas novas embalagens (propriedades térmicas, de barreira a gases e mecânicas). Uma forma de incrementar as propriedades físico-químicas dos polissacarídeos é a adição de nanopartículas (NPS) como agentes de reforço. Neste contexto, este trabalho teve como objetivo produzir filmes nanocompósitos de pectina com NPS de quitosana (QS) ou poli(ε-caprolactona) (PCL). Os materiais utilizados foram pectina (PEC) (de alto e baixo grau de metoxilação, GM), QS e PCL. Nanopartículas de QS (NPQS) foram obtidas por gelatinização ionotrópica e nanopartículas de PCL (NPPCL) por nanoprecipitação, e ambas foram caracterizadas segundo seus tamanhos médios, potenciais zeta e morfologias. O tamanho médio das NPQS ficou próximo dos 100 nm e potencial zeta acima de + 20mV, potencial este condizente com a natureza catiônica da QS e que indica estabilidade da suspensão. As NPPCL apresentaram tamanho médios por volta de 130 nm e potencial zeta próximo de -20 mV, relacionado à superfície da NPPCL ser recoberta com tensoativo. Em comparação com os dois tipos de NPS, as NPPCL apresentaram os menores valores de índice de polidispersividade, indicando suspensões mais homogêneas. Os filmes foram obtidos por casting a partir de soluções filmogênicas de PEC/NPS. Os filmes foram caracterizados segundo suas propriedades mecânicas, térmicas e de barreira ao vapor de água. O GM não interferiu de maneira significativa nas propriedades dos filmes. A adição das NPS (de QS e de PCL) incrementaram de forma significativa a tensão máxima e as temperaturas de degradação dos filmes, sugerindo interações consistentes entre a matriz de PEC e as NPS, sendo que o nanocompósito PEC com baixo GM e NPPCL demostrou um incremento de mais de 100% na tensão máxima. Em contraste com isso, as NPS não afetaram os valores de permeabilidade ao vapor de água dos filmes devido à solubilidade da PEC em água e à afinidade das NPS por moléculas de água, tornando a matriz mais propensa à permeação de água sem diminuição das propriedades mecânicas. Contudo, os resultados sugerem que os nanocompósitos podem representar uma alternativa para a produção de novas embalagens biodegradáveis.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarFilmesNanopartículasQuitosanaPectinaPoliepsloncaprolactonaCIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::FISICO-QUIMICA ORGANICADesenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestívelDevelopment of vegetable puree-containing nanocomposite films for edible food packaginginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600cd4a0e5b-b40b-46f6-8c76-2c2bcc3239a9info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissMVL.pdfDissMVL.pdfapplication/pdf3916043https://repositorio.ufscar.br/bitstream/ufscar/7516/1/DissMVL.pdf7602e80f581b59792ab5a4aec6ff4e46MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7516/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissMVL.pdf.txtDissMVL.pdf.txtExtracted texttext/plain205407https://repositorio.ufscar.br/bitstream/ufscar/7516/3/DissMVL.pdf.txt9fafbaaa6c979f27d5d3fd7ebba35296MD53THUMBNAILDissMVL.pdf.jpgDissMVL.pdf.jpgIM Thumbnailimage/jpeg9358https://repositorio.ufscar.br/bitstream/ufscar/7516/4/DissMVL.pdf.jpg7811366a310b329c5576c4297465cd19MD54ufscar/75162023-09-18 18:30:52.316oai:repositorio.ufscar.br:ufscar/7516TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:52Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
dc.title.alternative.eng.fl_str_mv Development of vegetable puree-containing nanocomposite films for edible food packaging
title Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
spellingShingle Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
Lorevice, Marcos Vinicius
Filmes
Nanopartículas
Quitosana
Pectina
Poliepsloncaprolactona
CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::FISICO-QUIMICA ORGANICA
title_short Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
title_full Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
title_fullStr Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
title_full_unstemmed Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
title_sort Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível
author Lorevice, Marcos Vinicius
author_facet Lorevice, Marcos Vinicius
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2975504886357030
dc.contributor.author.fl_str_mv Lorevice, Marcos Vinicius
dc.contributor.advisor1.fl_str_mv Mattoso, Luiz Henrique Capparelli
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5839043594908917
dc.contributor.authorID.fl_str_mv 7f34f380-0049-4852-a84a-654d01c1c057
contributor_str_mv Mattoso, Luiz Henrique Capparelli
dc.subject.por.fl_str_mv Filmes
Nanopartículas
Quitosana
Pectina
Poliepsloncaprolactona
topic Filmes
Nanopartículas
Quitosana
Pectina
Poliepsloncaprolactona
CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::FISICO-QUIMICA ORGANICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::FISICO-QUIMICA ORGANICA
description Petroleumderived packaging are neither renewable nor biodegradable. Based on it, recent studies have been focused in biopolymer-based packaging, such as in polysaccharides (e.g., pectin and chitosan), due to their good renewable and biodegradable characteristics. However, their physical-chemical properties (mechanical, thermal, and barrier) are urged to be improved. The addition of nanoparticles (NPS) as reinforcing agents has been shown as a feasible means of improving such properties. The goal of this work was the development of pectin (PEC) (low and high methoxyl degree, MD)-based nanocomposite films incorporated with chitosan (CS) and poly(ε-caprolactone) (PCL) nanoparticles (CSNP and PCLNP, respectively). CSNP were obtained by ionotropic gelation whereas PCLNP were obtained by the nanoprecipitation method. All NPS were characterized as to their morphology, size, and zeta potential. The CSNP size was nearly 100 nm and their zeta potential was close to + 20 mV, results which are in agreement whit CS cationic properties and indicated good suspension stability. PCLNP presented size values near to 130 nm and zeta potential of approximately - 20 mV because the surfactant is spread over PCLNP surface. PCLNP showed a smaller polydispersity index than CSNP, indicating a more homogenous suspension. This was also observed through electron microscopy of PCLNP. The nanocomposite films were obtained by casting from PEC/NPS film-forming solutions. The nanocomposite films’ mechanical, thermal, and water barrier properties were studied. The MD did not affect the analyzed properties of PECbased films. The addition of NPS (CSNP and PCLNP) increased the tensile strength and degradation temperature of all PEC-based films, suggesting good interactions between PEC network and NPS surface. The addition of PCLNP to low MD PEC films improved the tensile strength in more than 100%. Although, NPS did not change the water vapor permeability of the PEC-based nanocomposite films, which could be related with PEC good water solubility and NPS affinity to water molecules. These results indicate a novel material with physical-chemical properties desirable for food packaging applications, making this product competitive when compared with petroleum-based packaging.
publishDate 2015
dc.date.issued.fl_str_mv 2015-03-27
dc.date.accessioned.fl_str_mv 2016-09-27T19:39:20Z
dc.date.available.fl_str_mv 2016-09-27T19:39:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LOREVICE, Marcos Vinicius. Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível. 2015. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7516.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7516
identifier_str_mv LOREVICE, Marcos Vinicius. Desenvolvimento de filmes nanocompósitos contendo purê de vegetais para aplicação como embalagem comestível. 2015. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7516.
url https://repositorio.ufscar.br/handle/ufscar/7516
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv cd4a0e5b-b40b-46f6-8c76-2c2bcc3239a9
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7516/1/DissMVL.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7516/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7516/3/DissMVL.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7516/4/DissMVL.pdf.jpg
bitstream.checksum.fl_str_mv 7602e80f581b59792ab5a4aec6ff4e46
ae0398b6f8b235e40ad82cba6c50031d
9fafbaaa6c979f27d5d3fd7ebba35296
7811366a310b329c5576c4297465cd19
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136308063141888