Ultracold bosons in random lattice potentials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/17686 |
Resumo: | The Bose-Hubbard model describes short-range interacting spinless bosons on a random lattice. This model is realized in ultracold atomic systems where quantum phase transitions can be observed. When loaded into a deep potential depth perfect lattice, a cloud of cold bosonic atoms undergoes a quantum phase transition from a superfluid to a gapped Mott insulating phase. In the presence of additional random external potential, rare condensate regions can emerge inside an insulating background, forming a gapless Bose-glass state. Despite the well-understood characteristics of the Bose-Hubbard model, a precise analytic investigation of the effects of disorder on the energy spectrum remains unavailable, and a concrete characterization of the Bose-glass energy spectra, as well as its phase boundary with the Mott phase, is lacking. Here, we investigate how disorder affects the elementary excitations of the Bose-Hubbard model in the strongly interacting limit, and study the Mott-to-Bose glass quantum phase transition for zero and finite temperatures. We develop a perturbation method in the functional integral formalism to obtain a strong-coupling expansion for the single-particle Green's function in terms of the tunneling energy. By applying the partial summation method, we calculate the influence of an infinite subset of terms in such an expansion to the spectral function. Using the Poincaré-Lindstedt method, we compute the renormalized expression to the local density of states. We demonstrate that the spectrum is composed of stable-delocalized excitations at low energies and damped-localized excitations at slightly higher energies. When disorder becomes of the order of interactions, the stable-delocalized excitations become dispersionless due to their increased effective mass. In such a limit, the lifetime of the damped-localized excitations increases, and they dominate the whole energy band. We argue that such damped-localized excitations correspond to the low-energy excited states of the Bose-glass phase. Furthermore, by analyzing the local density of states, we show that this spectral information serves as a reliable parameter to unambiguously distinguish the Mott from the Bose-glass states both at zero and finite temperatures. Our results go beyond the mean-field theory predictions for the characterization of these ground states. Finally, we suggest an effective-action approach and a weak disorder expansion for the analysis of the superfluid excitation spectra. |
id |
SCAR_852dc05bacaa39bcf2e2b071c4ad98be |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/17686 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Souza, Renan da SilvaSantos, Francisco Ednilson Alves doshttp://lattes.cnpq.br/0500176058863562http://lattes.cnpq.br/2963018707693962f549ac53-9f7f-4d43-b8d4-2939a1c44d002023-04-11T15:37:34Z2023-04-11T15:37:34Z2023-04-06SOUZA, Renan da Silva. Ultracold bosons in random lattice potentials. 2023. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17686.https://repositorio.ufscar.br/handle/ufscar/17686The Bose-Hubbard model describes short-range interacting spinless bosons on a random lattice. This model is realized in ultracold atomic systems where quantum phase transitions can be observed. When loaded into a deep potential depth perfect lattice, a cloud of cold bosonic atoms undergoes a quantum phase transition from a superfluid to a gapped Mott insulating phase. In the presence of additional random external potential, rare condensate regions can emerge inside an insulating background, forming a gapless Bose-glass state. Despite the well-understood characteristics of the Bose-Hubbard model, a precise analytic investigation of the effects of disorder on the energy spectrum remains unavailable, and a concrete characterization of the Bose-glass energy spectra, as well as its phase boundary with the Mott phase, is lacking. Here, we investigate how disorder affects the elementary excitations of the Bose-Hubbard model in the strongly interacting limit, and study the Mott-to-Bose glass quantum phase transition for zero and finite temperatures. We develop a perturbation method in the functional integral formalism to obtain a strong-coupling expansion for the single-particle Green's function in terms of the tunneling energy. By applying the partial summation method, we calculate the influence of an infinite subset of terms in such an expansion to the spectral function. Using the Poincaré-Lindstedt method, we compute the renormalized expression to the local density of states. We demonstrate that the spectrum is composed of stable-delocalized excitations at low energies and damped-localized excitations at slightly higher energies. When disorder becomes of the order of interactions, the stable-delocalized excitations become dispersionless due to their increased effective mass. In such a limit, the lifetime of the damped-localized excitations increases, and they dominate the whole energy band. We argue that such damped-localized excitations correspond to the low-energy excited states of the Bose-glass phase. Furthermore, by analyzing the local density of states, we show that this spectral information serves as a reliable parameter to unambiguously distinguish the Mott from the Bose-glass states both at zero and finite temperatures. Our results go beyond the mean-field theory predictions for the characterization of these ground states. Finally, we suggest an effective-action approach and a weak disorder expansion for the analysis of the superfluid excitation spectra.O modelo de Bose-Hubbard descreve bosons sem spin que interagem a curta distância numa rede aleatória. Este modelo é realizado em sistemas de átomos ultra-frios, onde se podem observar transições de fase quânticas. À medida que a profundidade do potencial da rede é aumentada, tal sistema sofre uma transição de fase quântica de um superfluido para uma fase isolante de Mott. Na presença de um potencial externo aleatório, regiões raras de condensado podem surgir dentro de um fundo isolante, formando um estado de vidro de Bose. Apesar das características bem compreendidas do modelo de Bose-Hubbard, uma investigação analítica precisa dos efeitos da desordem no espectro de energia ainda não está disponível, e uma caracterização concreta do espectro de energia do vidro de Bose, bem como da sua fronteira de fase com a fase de Mott, está em falta. Neste trabalho, investigamos como a desordem afeta as excitações elementares do modelo de Bose-Hubbard no limite de interação forte e estudamos a transição de fase quântica de Mott-para-vidro de Bose para temperatura zero e temperaturas finitas. Desenvolvemos um método de perturbação com o formalismo de integrais funcionais para obter uma expansão de acoplamento forte para a função de Green em termos da energia de tunelamento. Aplicando o método de soma parcial, calculamos a influência de um subconjunto infinito de termos em tal expansão na função espectral. Usando o método de Poincaré-Lindstedt, calculamos a expressão renormalizada para a densidade local de estados. Demonstramos que o espectro é composto por excitações estáveis-deslocalizadas em baixas energias e excitações localizadas-amortecidas em energias ligeiramente mais altas. Quando a de-sordem se torna da ordem das interações, as excitações estáveis-deslocalizadas perdem a sua dispersão devido ao aumento da sua massa efetiva. Neste caso, o tempo de vida das excitações localizadas-amortecidas aumenta, e elas dominam toda a banda de energia. Argumentamos que tais excitações localizadas-amortecidas correspondem aos estados excitados de baixa energia da fase de vidro de Bose. Além disso, analisando a densidade local de estados, mostramos que tais informações espectrais servem como um parâmetro confiável para distinguir sem ambiguidade as fases de Mott e de vidro de Bose, tanto a temperaturas zero como a temperaturas finitas. Os nossos resultados vão além das previsões da teoria de campo médio para a caracterização desses estados fundamentais. Finalmente, sugerimos uma abordagem de ação efetiva e uma expansão de desordem fraca para a análise do espectro de excitações na fase superfluida.Deutscher Akademischer Austauschdienst (DAAD)Código de Financiamento 001, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Processo nº 88887.627948/2021- 00, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Deutscher Akademischer Austauschdienst (DAAD)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessBose-Hubbard HamiltonianQuantum phase transitionsDisorderSuperfluidBose glassMott insulatorGreen's functionSpectral functionOptical latticesUltracold atomsCIENCIAS EXATAS E DA TERRA::FISICAUltracold bosons in random lattice potentialsBósons ultrafrios em potenciais de rede aleatóriosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600f13717cc-bce5-4c73-99af-0aed226134cereponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8700https://repositorio.ufscar.br/bitstream/ufscar/17686/2/license_rdf79da7ba44461b593b4f6afc1f09853c4MD52ORIGINAL00_Thesis_Renan.pdf00_Thesis_Renan.pdfTexto da Teseapplication/pdf8796900https://repositorio.ufscar.br/bitstream/ufscar/17686/1/00_Thesis_Renan.pdfd06af27a59cc2cc1da958a7f561618aeMD51TEXT00_Thesis_Renan.pdf.txt00_Thesis_Renan.pdf.txtExtracted texttext/plain371589https://repositorio.ufscar.br/bitstream/ufscar/17686/3/00_Thesis_Renan.pdf.txtb1d0d3b45ea82228ed9e839e21572754MD53THUMBNAIL00_Thesis_Renan.pdf.jpg00_Thesis_Renan.pdf.jpgIM Thumbnailimage/jpeg5890https://repositorio.ufscar.br/bitstream/ufscar/17686/4/00_Thesis_Renan.pdf.jpgff40cdf3d7dff086195c6675904e6fdfMD54ufscar/176862023-09-18 18:32:36.058oai:repositorio.ufscar.br:ufscar/17686Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:36Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Ultracold bosons in random lattice potentials |
dc.title.alternative.por.fl_str_mv |
Bósons ultrafrios em potenciais de rede aleatórios |
title |
Ultracold bosons in random lattice potentials |
spellingShingle |
Ultracold bosons in random lattice potentials Souza, Renan da Silva Bose-Hubbard Hamiltonian Quantum phase transitions Disorder Superfluid Bose glass Mott insulator Green's function Spectral function Optical lattices Ultracold atoms CIENCIAS EXATAS E DA TERRA::FISICA |
title_short |
Ultracold bosons in random lattice potentials |
title_full |
Ultracold bosons in random lattice potentials |
title_fullStr |
Ultracold bosons in random lattice potentials |
title_full_unstemmed |
Ultracold bosons in random lattice potentials |
title_sort |
Ultracold bosons in random lattice potentials |
author |
Souza, Renan da Silva |
author_facet |
Souza, Renan da Silva |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2963018707693962 |
dc.contributor.author.fl_str_mv |
Souza, Renan da Silva |
dc.contributor.advisor1.fl_str_mv |
Santos, Francisco Ednilson Alves dos |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0500176058863562 |
dc.contributor.authorID.fl_str_mv |
f549ac53-9f7f-4d43-b8d4-2939a1c44d00 |
contributor_str_mv |
Santos, Francisco Ednilson Alves dos |
dc.subject.eng.fl_str_mv |
Bose-Hubbard Hamiltonian Quantum phase transitions Disorder Superfluid Bose glass Mott insulator Green's function Spectral function Optical lattices Ultracold atoms |
topic |
Bose-Hubbard Hamiltonian Quantum phase transitions Disorder Superfluid Bose glass Mott insulator Green's function Spectral function Optical lattices Ultracold atoms CIENCIAS EXATAS E DA TERRA::FISICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA |
description |
The Bose-Hubbard model describes short-range interacting spinless bosons on a random lattice. This model is realized in ultracold atomic systems where quantum phase transitions can be observed. When loaded into a deep potential depth perfect lattice, a cloud of cold bosonic atoms undergoes a quantum phase transition from a superfluid to a gapped Mott insulating phase. In the presence of additional random external potential, rare condensate regions can emerge inside an insulating background, forming a gapless Bose-glass state. Despite the well-understood characteristics of the Bose-Hubbard model, a precise analytic investigation of the effects of disorder on the energy spectrum remains unavailable, and a concrete characterization of the Bose-glass energy spectra, as well as its phase boundary with the Mott phase, is lacking. Here, we investigate how disorder affects the elementary excitations of the Bose-Hubbard model in the strongly interacting limit, and study the Mott-to-Bose glass quantum phase transition for zero and finite temperatures. We develop a perturbation method in the functional integral formalism to obtain a strong-coupling expansion for the single-particle Green's function in terms of the tunneling energy. By applying the partial summation method, we calculate the influence of an infinite subset of terms in such an expansion to the spectral function. Using the Poincaré-Lindstedt method, we compute the renormalized expression to the local density of states. We demonstrate that the spectrum is composed of stable-delocalized excitations at low energies and damped-localized excitations at slightly higher energies. When disorder becomes of the order of interactions, the stable-delocalized excitations become dispersionless due to their increased effective mass. In such a limit, the lifetime of the damped-localized excitations increases, and they dominate the whole energy band. We argue that such damped-localized excitations correspond to the low-energy excited states of the Bose-glass phase. Furthermore, by analyzing the local density of states, we show that this spectral information serves as a reliable parameter to unambiguously distinguish the Mott from the Bose-glass states both at zero and finite temperatures. Our results go beyond the mean-field theory predictions for the characterization of these ground states. Finally, we suggest an effective-action approach and a weak disorder expansion for the analysis of the superfluid excitation spectra. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-04-11T15:37:34Z |
dc.date.available.fl_str_mv |
2023-04-11T15:37:34Z |
dc.date.issued.fl_str_mv |
2023-04-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA, Renan da Silva. Ultracold bosons in random lattice potentials. 2023. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17686. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/17686 |
identifier_str_mv |
SOUZA, Renan da Silva. Ultracold bosons in random lattice potentials. 2023. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17686. |
url |
https://repositorio.ufscar.br/handle/ufscar/17686 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
f13717cc-bce5-4c73-99af-0aed226134ce |
dc.rights.driver.fl_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Física - PPGF |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/17686/2/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/17686/1/00_Thesis_Renan.pdf https://repositorio.ufscar.br/bitstream/ufscar/17686/3/00_Thesis_Renan.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/17686/4/00_Thesis_Renan.pdf.jpg |
bitstream.checksum.fl_str_mv |
79da7ba44461b593b4f6afc1f09853c4 d06af27a59cc2cc1da958a7f561618ae b1d0d3b45ea82228ed9e839e21572754 ff40cdf3d7dff086195c6675904e6fdf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715662145585152 |