Regressão binária nas abordagens clássica e bayesiana

Detalhes bibliográficos
Autor(a) principal: Fernandes, Amélia Milene Correia
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/8836
Resumo: The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian appro- ach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior dis- tributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that infuence the approval of the student.
id SCAR_85b0ce4f123c7fb706855bb57d48fa4f
oai_identifier_str oai:repositorio.ufscar.br:ufscar/8836
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Fernandes, Amélia Milene CorreiaAndrade Filho, Marinho Gomes dehttp://lattes.cnpq.br/4126245980112687http://lattes.cnpq.br/5662278850972757961136ad-9077-4054-b543-4e61360289e22017-06-05T19:18:45Z2017-06-05T19:18:45Z2016-12-16FERNANDES, Amélia Milene Correia. Regressão binária nas abordagens clássica e bayesiana. 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8836.https://repositorio.ufscar.br/handle/ufscar/8836The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian appro- ach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior dis- tributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that infuence the approval of the student.Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funcoes de ligacoes probito, logito, complemento log-log, transformaçao box-cox e probito-assimetrico. Na abordagem clássica apresentamos as suposicoes e o procedimento para ajustar o modelo de regressao e verificamos a precisão dos parâmetros estimados, construindo intervalos de confianca e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori nao informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáaveis auxiliares para obter a distribuiçcaão a posteriori conhecida, facilitando a implementacão do algoritmo do Amostrador de Gibbs. No entanto, a introduçao destas variaveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelaçcãao. Atraves do estudo de simulacao mostramos que na inferência classica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confianca assintotica está de acordo com o esperado na teoria assintática. Na inferência bayesiana constatamos que o uso de va-riaáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrâtico medio (EQM), erro percentual absoluto medio (MAPE) e erro percentual absoluto medio simetrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variaçao do Ibovespa e a variacao do valor diário do fechamento da cotacao do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variaveis que influenciam a aprovacao do aluno.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarModelo de regressão bináriaInferência clássicaInferência bayesianaVariável auxiliarFunção de ligaçãoBinary regression modelClassical inferenceBayesian inferenceLink functionCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICARegressão binária nas abordagens clássica e bayesianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6006006105a248-1b18-49f6-bbf3-c4006673f34ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissAMCF.pdfDissAMCF.pdfapplication/pdf1964890https://repositorio.ufscar.br/bitstream/ufscar/8836/1/DissAMCF.pdf84bcbd06f74840be6fc5f38659c34c07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/8836/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissAMCF.pdf.txtDissAMCF.pdf.txtExtracted texttext/plain156485https://repositorio.ufscar.br/bitstream/ufscar/8836/3/DissAMCF.pdf.txt2092b06547a43e61aa79495dc11dfeccMD53THUMBNAILDissAMCF.pdf.jpgDissAMCF.pdf.jpgIM Thumbnailimage/jpeg4842https://repositorio.ufscar.br/bitstream/ufscar/8836/4/DissAMCF.pdf.jpg40adfe0de49f017f9cff8530486bad1aMD54ufscar/88362023-09-18 18:31:24.487oai:repositorio.ufscar.br:ufscar/8836TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:24Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Regressão binária nas abordagens clássica e bayesiana
title Regressão binária nas abordagens clássica e bayesiana
spellingShingle Regressão binária nas abordagens clássica e bayesiana
Fernandes, Amélia Milene Correia
Modelo de regressão binária
Inferência clássica
Inferência bayesiana
Variável auxiliar
Função de ligação
Binary regression model
Classical inference
Bayesian inference
Link function
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Regressão binária nas abordagens clássica e bayesiana
title_full Regressão binária nas abordagens clássica e bayesiana
title_fullStr Regressão binária nas abordagens clássica e bayesiana
title_full_unstemmed Regressão binária nas abordagens clássica e bayesiana
title_sort Regressão binária nas abordagens clássica e bayesiana
author Fernandes, Amélia Milene Correia
author_facet Fernandes, Amélia Milene Correia
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5662278850972757
dc.contributor.author.fl_str_mv Fernandes, Amélia Milene Correia
dc.contributor.advisor1.fl_str_mv Andrade Filho, Marinho Gomes de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4126245980112687
dc.contributor.authorID.fl_str_mv 961136ad-9077-4054-b543-4e61360289e2
contributor_str_mv Andrade Filho, Marinho Gomes de
dc.subject.por.fl_str_mv Modelo de regressão binária
Inferência clássica
Inferência bayesiana
Variável auxiliar
Função de ligação
topic Modelo de regressão binária
Inferência clássica
Inferência bayesiana
Variável auxiliar
Função de ligação
Binary regression model
Classical inference
Bayesian inference
Link function
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Binary regression model
Classical inference
Bayesian inference
Link function
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian appro- ach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior dis- tributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that infuence the approval of the student.
publishDate 2016
dc.date.issued.fl_str_mv 2016-12-16
dc.date.accessioned.fl_str_mv 2017-06-05T19:18:45Z
dc.date.available.fl_str_mv 2017-06-05T19:18:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERNANDES, Amélia Milene Correia. Regressão binária nas abordagens clássica e bayesiana. 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8836.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/8836
identifier_str_mv FERNANDES, Amélia Milene Correia. Regressão binária nas abordagens clássica e bayesiana. 2016. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8836.
url https://repositorio.ufscar.br/handle/ufscar/8836
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 6105a248-1b18-49f6-bbf3-c4006673f34a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/8836/1/DissAMCF.pdf
https://repositorio.ufscar.br/bitstream/ufscar/8836/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/8836/3/DissAMCF.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/8836/4/DissAMCF.pdf.jpg
bitstream.checksum.fl_str_mv 84bcbd06f74840be6fc5f38659c34c07
ae0398b6f8b235e40ad82cba6c50031d
2092b06547a43e61aa79495dc11dfecc
40adfe0de49f017f9cff8530486bad1a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715575845683200