Euclidean hypersurfaces with genuine conformal deformations in codimension two

Detalhes bibliográficos
Autor(a) principal: Chion Aguirre, Sergio Julio
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9499
Resumo: We classify hypersurfaces f:Mn → Rn+1 with a principal curvature of multiplicity n − 2 that admit a genuine conformal deformation f':Mn → Rn+2. That a conformal deformation f':Mn → Rn+2 of f is genuine means that there does not exist any open subset U ⊂ M such that f'|U is a composition f'|U = h ◦ f|U of f|U with a conformal immersion h:V → Rn+2 of an open subset V ⊂ Rn+1 containing f(U).
id SCAR_883103379a4af8b6dd523b02617ae4ef
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9499
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Chion Aguirre, Sergio JulioFigueiredo Junior, Ruy Tojeiro dehttp://lattes.cnpq.br/9930999514347198http://lattes.cnpq.br/2305959565667431aa8b5c98-f5e0-401f-8444-06713e16addc2018-03-05T11:35:40Z2018-03-05T11:35:40Z2018-01-05CHION AGUIRRE, Sergio Julio. Euclidean hypersurfaces with genuine conformal deformations in codimension two. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9499.https://repositorio.ufscar.br/handle/ufscar/9499We classify hypersurfaces f:Mn → Rn+1 with a principal curvature of multiplicity n − 2 that admit a genuine conformal deformation f':Mn → Rn+2. That a conformal deformation f':Mn → Rn+2 of f is genuine means that there does not exist any open subset U ⊂ M such that f'|U is a composition f'|U = h ◦ f|U of f|U with a conformal immersion h:V → Rn+2 of an open subset V ⊂ Rn+1 containing f(U).Classificamos as hipersuperfícies f:Mn → Rn+1 que possuem uma curvatura principal de multiplicidade n−2 que admitem uma deformação conforme genuína f':Mn → Rn+2. Uma deformação conforme f':Mn → Rn+2 de f é genuína se em nenhum aberto U ⊂ M a restrição f'|U é uma composição f'|U = h ◦ f|U de f|U com uma immersão conforme h:V → Rn+2 de um aberto V ⊂ Rn+1 que contém f(U).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarTeoria de subvariedadesDeformação genuína conformeHipersuperfícies de CartanSubmanifold theoryGenuine conformal deformationCartan HypersurfacesCIENCIAS EXATAS E DA TERRA::MATEMATICAEuclidean hypersurfaces with genuine conformal deformations in codimension twoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60027fd6011-41f1-45f6-8dbf-fc4a2dd73c9binfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9499/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53ORIGINALAGUIRRE_Sergio_2018.pdfAGUIRRE_Sergio_2018.pdfapplication/pdf764990https://repositorio.ufscar.br/bitstream/ufscar/9499/4/AGUIRRE_Sergio_2018.pdfce42520a1ad3cf2dda6ee8fb4a997dfbMD54TEXTAGUIRRE_Sergio_2018.pdf.txtAGUIRRE_Sergio_2018.pdf.txtExtracted texttext/plain237169https://repositorio.ufscar.br/bitstream/ufscar/9499/5/AGUIRRE_Sergio_2018.pdf.txt3517fad7b8b7c5c0915cebcb74558b3fMD55THUMBNAILAGUIRRE_Sergio_2018.pdf.jpgAGUIRRE_Sergio_2018.pdf.jpgIM Thumbnailimage/jpeg6758https://repositorio.ufscar.br/bitstream/ufscar/9499/6/AGUIRRE_Sergio_2018.pdf.jpg15e251e7d15dc5336202a2694e4ee8c8MD56ufscar/94992023-09-18 18:31:13.723oai:repositorio.ufscar.br:ufscar/9499TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Euclidean hypersurfaces with genuine conformal deformations in codimension two
title Euclidean hypersurfaces with genuine conformal deformations in codimension two
spellingShingle Euclidean hypersurfaces with genuine conformal deformations in codimension two
Chion Aguirre, Sergio Julio
Teoria de subvariedades
Deformação genuína conforme
Hipersuperfícies de Cartan
Submanifold theory
Genuine conformal deformation
Cartan Hypersurfaces
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Euclidean hypersurfaces with genuine conformal deformations in codimension two
title_full Euclidean hypersurfaces with genuine conformal deformations in codimension two
title_fullStr Euclidean hypersurfaces with genuine conformal deformations in codimension two
title_full_unstemmed Euclidean hypersurfaces with genuine conformal deformations in codimension two
title_sort Euclidean hypersurfaces with genuine conformal deformations in codimension two
author Chion Aguirre, Sergio Julio
author_facet Chion Aguirre, Sergio Julio
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2305959565667431
dc.contributor.author.fl_str_mv Chion Aguirre, Sergio Julio
dc.contributor.advisor1.fl_str_mv Figueiredo Junior, Ruy Tojeiro de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9930999514347198
dc.contributor.authorID.fl_str_mv aa8b5c98-f5e0-401f-8444-06713e16addc
contributor_str_mv Figueiredo Junior, Ruy Tojeiro de
dc.subject.por.fl_str_mv Teoria de subvariedades
Deformação genuína conforme
Hipersuperfícies de Cartan
topic Teoria de subvariedades
Deformação genuína conforme
Hipersuperfícies de Cartan
Submanifold theory
Genuine conformal deformation
Cartan Hypersurfaces
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Submanifold theory
Genuine conformal deformation
Cartan Hypersurfaces
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description We classify hypersurfaces f:Mn → Rn+1 with a principal curvature of multiplicity n − 2 that admit a genuine conformal deformation f':Mn → Rn+2. That a conformal deformation f':Mn → Rn+2 of f is genuine means that there does not exist any open subset U ⊂ M such that f'|U is a composition f'|U = h ◦ f|U of f|U with a conformal immersion h:V → Rn+2 of an open subset V ⊂ Rn+1 containing f(U).
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-03-05T11:35:40Z
dc.date.available.fl_str_mv 2018-03-05T11:35:40Z
dc.date.issued.fl_str_mv 2018-01-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CHION AGUIRRE, Sergio Julio. Euclidean hypersurfaces with genuine conformal deformations in codimension two. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9499.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9499
identifier_str_mv CHION AGUIRRE, Sergio Julio. Euclidean hypersurfaces with genuine conformal deformations in codimension two. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9499.
url https://repositorio.ufscar.br/handle/ufscar/9499
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 27fd6011-41f1-45f6-8dbf-fc4a2dd73c9b
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9499/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9499/4/AGUIRRE_Sergio_2018.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9499/5/AGUIRRE_Sergio_2018.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9499/6/AGUIRRE_Sergio_2018.pdf.jpg
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
ce42520a1ad3cf2dda6ee8fb4a997dfb
3517fad7b8b7c5c0915cebcb74558b3f
15e251e7d15dc5336202a2694e4ee8c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715586660696064