Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series

Detalhes bibliográficos
Autor(a) principal: Discola Junior, Sérgio Luisir
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11645
Resumo: Solar flares are huge releases of energy from the Sun. They are categorized in five levels according to their potential damage to Earth (A, B, C, M, and X) and may produce strong impacts to communication systems, threatening human activities dependent on satellites and GPS. Therefore, predicting it in advance may reduce their negative impacts. However, solar flare forecasting has significant challenges: (a) the sequence of data influences the phenomena and should be tracked; (b) the features and intervals that cause and influence the phenomena are not defined; (c) the forecasting should be performed in an affordable time; (d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish, (f) the majority approaches perform binary forecasting (aggregating solar flare classes), instead of multi-class, as actually required. This work proposed a method that tackles these challenges simultaneously, being different from previous works, which tend to handle a challenge per time. First, we aimed to forecast the X-ray levels expected for the next few days. We proposed the SeMiner method that allows the labels prediction given past observations. SeMiner processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al- gorithm through a sliding window approach configured by a domain specialist. This method allows to consider the sequence of instances in the mining process, handling challenge (a). Next, feature selection is employed in order to determine which interval of data in the time series, most influences the forecasting process, handling challenge (b). Then, the processed sequences are submitted to a traditional classifier to generate a model that predicts future X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec- tively for True Positive and True Negative Rates. Second, we parallelized SS to increase its performance, in order to tackle issue (c), by implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in its time processing due to the distribution of the processing among the GPUs (Graphics Processing Unit). Third, we improved SeMiner to tackle the remaining challenges by developing a new method called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class, ECID employs a stratified random sampling for training binary-class base inducers, strength- ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue (d). Using a modified bootstrap approach, an aggregation method combines the inducers results, enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of 97%, in a time horizon of one day.
id SCAR_8991f16e4d03177d4ec7dc42f80ba8ce
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11645
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Discola Junior, Sérgio LuisirFernandes, Marcio Merinohttp://lattes.cnpq.br/7278634019537967http://lattes.cnpq.br/22737928064555944c5fc6ca-aa0b-48eb-a4c8-bfba5bef56b92019-08-08T16:54:26Z2019-08-08T16:54:26Z2019-06-21DISCOLA JUNIOR, Sérgio Luisir. Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11645.https://repositorio.ufscar.br/handle/ufscar/11645Solar flares are huge releases of energy from the Sun. They are categorized in five levels according to their potential damage to Earth (A, B, C, M, and X) and may produce strong impacts to communication systems, threatening human activities dependent on satellites and GPS. Therefore, predicting it in advance may reduce their negative impacts. However, solar flare forecasting has significant challenges: (a) the sequence of data influences the phenomena and should be tracked; (b) the features and intervals that cause and influence the phenomena are not defined; (c) the forecasting should be performed in an affordable time; (d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish, (f) the majority approaches perform binary forecasting (aggregating solar flare classes), instead of multi-class, as actually required. This work proposed a method that tackles these challenges simultaneously, being different from previous works, which tend to handle a challenge per time. First, we aimed to forecast the X-ray levels expected for the next few days. We proposed the SeMiner method that allows the labels prediction given past observations. SeMiner processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al- gorithm through a sliding window approach configured by a domain specialist. This method allows to consider the sequence of instances in the mining process, handling challenge (a). Next, feature selection is employed in order to determine which interval of data in the time series, most influences the forecasting process, handling challenge (b). Then, the processed sequences are submitted to a traditional classifier to generate a model that predicts future X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec- tively for True Positive and True Negative Rates. Second, we parallelized SS to increase its performance, in order to tackle issue (c), by implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in its time processing due to the distribution of the processing among the GPUs (Graphics Processing Unit). Third, we improved SeMiner to tackle the remaining challenges by developing a new method called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class, ECID employs a stratified random sampling for training binary-class base inducers, strength- ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue (d). Using a modified bootstrap approach, an aggregation method combines the inducers results, enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of 97%, in a time horizon of one day.Explosões solares são enormes liberações de energia do Sol. Elas são classificadas em cinco níveis (A, B, C, M e X) de acordo com seus possíveis danos à Terra e podem produzir grandes impactos nos sistemas de comunicação, ameaçando atividades humanas dependentes de satélites e GPS. Portanto, prevê-las antecipadamente pode reduzir tais impactos. A previsão de explosões solares apresentam desafios significativos: (a) a sequência de dados deve ser rastreada devido à sua influência no fenômeno; (b) as características solares que influenciam neste fenômeno não estão totalmente estabelecidos; (c) a previsão deve ser realizada em tempo razoável; (d) os dados são altamente desbalanceados, (e) as classes adjacentes às vezes são difíceis de distinguir, (f) a maioria das abordagens realizam previsão binária (agregando classes de explosões solar), ao invés de prover uma previsão multi-classe. Este trabalho de doutorado propôs um método que aborda esses desafios simultaneamente, diferentemente de trabalhos anteriores, que tendem a lidar com um desafio por vez. Para tanto, inicialmente, nós objetivamos prever explosões solares para um horizonte de poucos dias. Foi proposto o método SeMiner, o qual permite a previsão de explosões, dados valores observados passados. O método SeMiner processa séries temporais de Raios-X em sequencias empregando o algoritmo "Series-to-Sequence" (SS) através de uma abordagem de janela deslizante configurada pelo especialista do domínio. Este método considera uma sequência de instâncias no processo de mineração, lidando com o desafio (a). Após isso, a seleção de características é aplicada a fim de determinar o intervalo de dados na série temporal, que mais influencia o processo de previsão. Isto tratou o desafio (b). Então, as sequências processadas são submetidas a classificadores tradicionais para gerar um modelo que prevê níveis de Raios-X futuros. O SeMiner alcançou 73% de acurácia para uma previsão de 1 dia, 71% e 79%, respectivamente para TPR e TNR. Um segundo passo foi desenvolvido através da paralelização do algoritmo SS, o qual melhorou o seu desempenho. Este desenvolvimento lidou com a questão (c), implementando esta otimização através da plataforma CUDA. Esta implementação permitiu um "speedup" de 4.36 no seu tempo de processamento devido à distribuição do processamento entre as GPUs ("Unidades Gráficas de Processamento"). O terceiro passo foi composto pela melhoria do método SeMiner. Este passo lidou com os desafios restantes através do desenvolvimento de um novo método chamado ECID ("Ensemble of classifiers for imbalanced datasets"). Para cada classe de explosão solar, o ECID aplica uma amostragem aleatória estratificada para treinar classificadores base binários, fortalecendo sua sensitividade para uma dada classe em um cenário desbalanceado. Esta etapa tratou a questão (d). Através de uma abordagem de "Bootstrap" modificada, o ECID usa um método de agregação que combina os resultados dos classificadores base, possibilitando uma previsão multi-classe e multi-label. Desta forma, o desafio (e) foi trabalhado. Os resultados mostraram que o ECID é bem adequado para previsão de explosões solares, alcançando um TPR médio de 91% e uma precisão média de 97% em um horizonte de previsão de um dia.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarExplosão solarPrevisãoSéries temporaisMineração de dadosClassificação em séries temporaisSeleção de caracterı́sticasConjunto de dados desbalanceadosSolar flareForecastingTime seriesData miningClassifiersTime series classificationFeature selectionImbalanced datasetCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEnhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time seriesAprimorando a previsão de explosões solares: uma abordagem de classificação multi-classe e multi-label para lidar com séries temporais desbalanceadasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6005ec67636-e6e1-4201-9dca-1285b3be1babinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdfTese de doutorado intitulada "Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series"application/pdf3298307https://repositorio.ufscar.br/bitstream/ufscar/11645/1/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdfb28312a8d132689811b2f5433f9cc689MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11645/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXT00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txt00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txtExtracted texttext/plain322263https://repositorio.ufscar.br/bitstream/ufscar/11645/4/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txtf434d9db8fa251a963a22147b81d230aMD54THUMBNAIL00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpg00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpgIM Thumbnailimage/jpeg8520https://repositorio.ufscar.br/bitstream/ufscar/11645/5/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpg6e6b2e888c768af10378d94e5add8ed6MD55ufscar/116452023-09-18 18:31:23.039oai:repositorio.ufscar.br:ufscar/11645TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:23Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
dc.title.alternative.por.fl_str_mv Aprimorando a previsão de explosões solares: uma abordagem de classificação multi-classe e multi-label para lidar com séries temporais desbalanceadas
title Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
spellingShingle Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
Discola Junior, Sérgio Luisir
Explosão solar
Previsão
Séries temporais
Mineração de dados
Classificação em séries temporais
Seleção de caracterı́sticas
Conjunto de dados desbalanceados
Solar flare
Forecasting
Time series
Data mining
Classifiers
Time series classification
Feature selection
Imbalanced dataset
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
title_full Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
title_fullStr Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
title_full_unstemmed Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
title_sort Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
author Discola Junior, Sérgio Luisir
author_facet Discola Junior, Sérgio Luisir
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2273792806455594
dc.contributor.author.fl_str_mv Discola Junior, Sérgio Luisir
dc.contributor.advisor1.fl_str_mv Fernandes, Marcio Merino
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7278634019537967
dc.contributor.authorID.fl_str_mv 4c5fc6ca-aa0b-48eb-a4c8-bfba5bef56b9
contributor_str_mv Fernandes, Marcio Merino
dc.subject.por.fl_str_mv Explosão solar
Previsão
Séries temporais
Mineração de dados
Classificação em séries temporais
Seleção de caracterı́sticas
Conjunto de dados desbalanceados
topic Explosão solar
Previsão
Séries temporais
Mineração de dados
Classificação em séries temporais
Seleção de caracterı́sticas
Conjunto de dados desbalanceados
Solar flare
Forecasting
Time series
Data mining
Classifiers
Time series classification
Feature selection
Imbalanced dataset
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Solar flare
Forecasting
Time series
Data mining
Classifiers
Time series classification
Feature selection
Imbalanced dataset
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Solar flares are huge releases of energy from the Sun. They are categorized in five levels according to their potential damage to Earth (A, B, C, M, and X) and may produce strong impacts to communication systems, threatening human activities dependent on satellites and GPS. Therefore, predicting it in advance may reduce their negative impacts. However, solar flare forecasting has significant challenges: (a) the sequence of data influences the phenomena and should be tracked; (b) the features and intervals that cause and influence the phenomena are not defined; (c) the forecasting should be performed in an affordable time; (d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish, (f) the majority approaches perform binary forecasting (aggregating solar flare classes), instead of multi-class, as actually required. This work proposed a method that tackles these challenges simultaneously, being different from previous works, which tend to handle a challenge per time. First, we aimed to forecast the X-ray levels expected for the next few days. We proposed the SeMiner method that allows the labels prediction given past observations. SeMiner processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al- gorithm through a sliding window approach configured by a domain specialist. This method allows to consider the sequence of instances in the mining process, handling challenge (a). Next, feature selection is employed in order to determine which interval of data in the time series, most influences the forecasting process, handling challenge (b). Then, the processed sequences are submitted to a traditional classifier to generate a model that predicts future X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec- tively for True Positive and True Negative Rates. Second, we parallelized SS to increase its performance, in order to tackle issue (c), by implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in its time processing due to the distribution of the processing among the GPUs (Graphics Processing Unit). Third, we improved SeMiner to tackle the remaining challenges by developing a new method called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class, ECID employs a stratified random sampling for training binary-class base inducers, strength- ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue (d). Using a modified bootstrap approach, an aggregation method combines the inducers results, enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of 97%, in a time horizon of one day.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-08-08T16:54:26Z
dc.date.available.fl_str_mv 2019-08-08T16:54:26Z
dc.date.issued.fl_str_mv 2019-06-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DISCOLA JUNIOR, Sérgio Luisir. Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11645.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11645
identifier_str_mv DISCOLA JUNIOR, Sérgio Luisir. Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11645.
url https://repositorio.ufscar.br/handle/ufscar/11645
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 5ec67636-e6e1-4201-9dca-1285b3be1bab
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11645/1/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11645/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11645/4/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11645/5/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpg
bitstream.checksum.fl_str_mv b28312a8d132689811b2f5433f9cc689
ae0398b6f8b235e40ad82cba6c50031d
f434d9db8fa251a963a22147b81d230a
6e6b2e888c768af10378d94e5add8ed6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715606385459200