Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/11645 |
Resumo: | Solar flares are huge releases of energy from the Sun. They are categorized in five levels according to their potential damage to Earth (A, B, C, M, and X) and may produce strong impacts to communication systems, threatening human activities dependent on satellites and GPS. Therefore, predicting it in advance may reduce their negative impacts. However, solar flare forecasting has significant challenges: (a) the sequence of data influences the phenomena and should be tracked; (b) the features and intervals that cause and influence the phenomena are not defined; (c) the forecasting should be performed in an affordable time; (d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish, (f) the majority approaches perform binary forecasting (aggregating solar flare classes), instead of multi-class, as actually required. This work proposed a method that tackles these challenges simultaneously, being different from previous works, which tend to handle a challenge per time. First, we aimed to forecast the X-ray levels expected for the next few days. We proposed the SeMiner method that allows the labels prediction given past observations. SeMiner processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al- gorithm through a sliding window approach configured by a domain specialist. This method allows to consider the sequence of instances in the mining process, handling challenge (a). Next, feature selection is employed in order to determine which interval of data in the time series, most influences the forecasting process, handling challenge (b). Then, the processed sequences are submitted to a traditional classifier to generate a model that predicts future X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec- tively for True Positive and True Negative Rates. Second, we parallelized SS to increase its performance, in order to tackle issue (c), by implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in its time processing due to the distribution of the processing among the GPUs (Graphics Processing Unit). Third, we improved SeMiner to tackle the remaining challenges by developing a new method called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class, ECID employs a stratified random sampling for training binary-class base inducers, strength- ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue (d). Using a modified bootstrap approach, an aggregation method combines the inducers results, enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of 97%, in a time horizon of one day. |
id |
SCAR_8991f16e4d03177d4ec7dc42f80ba8ce |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/11645 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Discola Junior, Sérgio LuisirFernandes, Marcio Merinohttp://lattes.cnpq.br/7278634019537967http://lattes.cnpq.br/22737928064555944c5fc6ca-aa0b-48eb-a4c8-bfba5bef56b92019-08-08T16:54:26Z2019-08-08T16:54:26Z2019-06-21DISCOLA JUNIOR, Sérgio Luisir. Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11645.https://repositorio.ufscar.br/handle/ufscar/11645Solar flares are huge releases of energy from the Sun. They are categorized in five levels according to their potential damage to Earth (A, B, C, M, and X) and may produce strong impacts to communication systems, threatening human activities dependent on satellites and GPS. Therefore, predicting it in advance may reduce their negative impacts. However, solar flare forecasting has significant challenges: (a) the sequence of data influences the phenomena and should be tracked; (b) the features and intervals that cause and influence the phenomena are not defined; (c) the forecasting should be performed in an affordable time; (d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish, (f) the majority approaches perform binary forecasting (aggregating solar flare classes), instead of multi-class, as actually required. This work proposed a method that tackles these challenges simultaneously, being different from previous works, which tend to handle a challenge per time. First, we aimed to forecast the X-ray levels expected for the next few days. We proposed the SeMiner method that allows the labels prediction given past observations. SeMiner processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al- gorithm through a sliding window approach configured by a domain specialist. This method allows to consider the sequence of instances in the mining process, handling challenge (a). Next, feature selection is employed in order to determine which interval of data in the time series, most influences the forecasting process, handling challenge (b). Then, the processed sequences are submitted to a traditional classifier to generate a model that predicts future X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec- tively for True Positive and True Negative Rates. Second, we parallelized SS to increase its performance, in order to tackle issue (c), by implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in its time processing due to the distribution of the processing among the GPUs (Graphics Processing Unit). Third, we improved SeMiner to tackle the remaining challenges by developing a new method called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class, ECID employs a stratified random sampling for training binary-class base inducers, strength- ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue (d). Using a modified bootstrap approach, an aggregation method combines the inducers results, enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of 97%, in a time horizon of one day.Explosões solares são enormes liberações de energia do Sol. Elas são classificadas em cinco níveis (A, B, C, M e X) de acordo com seus possíveis danos à Terra e podem produzir grandes impactos nos sistemas de comunicação, ameaçando atividades humanas dependentes de satélites e GPS. Portanto, prevê-las antecipadamente pode reduzir tais impactos. A previsão de explosões solares apresentam desafios significativos: (a) a sequência de dados deve ser rastreada devido à sua influência no fenômeno; (b) as características solares que influenciam neste fenômeno não estão totalmente estabelecidos; (c) a previsão deve ser realizada em tempo razoável; (d) os dados são altamente desbalanceados, (e) as classes adjacentes às vezes são difíceis de distinguir, (f) a maioria das abordagens realizam previsão binária (agregando classes de explosões solar), ao invés de prover uma previsão multi-classe. Este trabalho de doutorado propôs um método que aborda esses desafios simultaneamente, diferentemente de trabalhos anteriores, que tendem a lidar com um desafio por vez. Para tanto, inicialmente, nós objetivamos prever explosões solares para um horizonte de poucos dias. Foi proposto o método SeMiner, o qual permite a previsão de explosões, dados valores observados passados. O método SeMiner processa séries temporais de Raios-X em sequencias empregando o algoritmo "Series-to-Sequence" (SS) através de uma abordagem de janela deslizante configurada pelo especialista do domínio. Este método considera uma sequência de instâncias no processo de mineração, lidando com o desafio (a). Após isso, a seleção de características é aplicada a fim de determinar o intervalo de dados na série temporal, que mais influencia o processo de previsão. Isto tratou o desafio (b). Então, as sequências processadas são submetidas a classificadores tradicionais para gerar um modelo que prevê níveis de Raios-X futuros. O SeMiner alcançou 73% de acurácia para uma previsão de 1 dia, 71% e 79%, respectivamente para TPR e TNR. Um segundo passo foi desenvolvido através da paralelização do algoritmo SS, o qual melhorou o seu desempenho. Este desenvolvimento lidou com a questão (c), implementando esta otimização através da plataforma CUDA. Esta implementação permitiu um "speedup" de 4.36 no seu tempo de processamento devido à distribuição do processamento entre as GPUs ("Unidades Gráficas de Processamento"). O terceiro passo foi composto pela melhoria do método SeMiner. Este passo lidou com os desafios restantes através do desenvolvimento de um novo método chamado ECID ("Ensemble of classifiers for imbalanced datasets"). Para cada classe de explosão solar, o ECID aplica uma amostragem aleatória estratificada para treinar classificadores base binários, fortalecendo sua sensitividade para uma dada classe em um cenário desbalanceado. Esta etapa tratou a questão (d). Através de uma abordagem de "Bootstrap" modificada, o ECID usa um método de agregação que combina os resultados dos classificadores base, possibilitando uma previsão multi-classe e multi-label. Desta forma, o desafio (e) foi trabalhado. Os resultados mostraram que o ECID é bem adequado para previsão de explosões solares, alcançando um TPR médio de 91% e uma precisão média de 97% em um horizonte de previsão de um dia.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarExplosão solarPrevisãoSéries temporaisMineração de dadosClassificação em séries temporaisSeleção de caracterı́sticasConjunto de dados desbalanceadosSolar flareForecastingTime seriesData miningClassifiersTime series classificationFeature selectionImbalanced datasetCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEnhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time seriesAprimorando a previsão de explosões solares: uma abordagem de classificação multi-classe e multi-label para lidar com séries temporais desbalanceadasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6005ec67636-e6e1-4201-9dca-1285b3be1babinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdfTese de doutorado intitulada "Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series"application/pdf3298307https://repositorio.ufscar.br/bitstream/ufscar/11645/1/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdfb28312a8d132689811b2f5433f9cc689MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11645/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXT00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txt00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txtExtracted texttext/plain322263https://repositorio.ufscar.br/bitstream/ufscar/11645/4/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txtf434d9db8fa251a963a22147b81d230aMD54THUMBNAIL00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpg00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpgIM Thumbnailimage/jpeg8520https://repositorio.ufscar.br/bitstream/ufscar/11645/5/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpg6e6b2e888c768af10378d94e5add8ed6MD55ufscar/116452023-09-18 18:31:23.039oai:repositorio.ufscar.br:ufscar/11645TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:23Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
dc.title.alternative.por.fl_str_mv |
Aprimorando a previsão de explosões solares: uma abordagem de classificação multi-classe e multi-label para lidar com séries temporais desbalanceadas |
title |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
spellingShingle |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series Discola Junior, Sérgio Luisir Explosão solar Previsão Séries temporais Mineração de dados Classificação em séries temporais Seleção de caracterı́sticas Conjunto de dados desbalanceados Solar flare Forecasting Time series Data mining Classifiers Time series classification Feature selection Imbalanced dataset CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
title_full |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
title_fullStr |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
title_full_unstemmed |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
title_sort |
Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series |
author |
Discola Junior, Sérgio Luisir |
author_facet |
Discola Junior, Sérgio Luisir |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2273792806455594 |
dc.contributor.author.fl_str_mv |
Discola Junior, Sérgio Luisir |
dc.contributor.advisor1.fl_str_mv |
Fernandes, Marcio Merino |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7278634019537967 |
dc.contributor.authorID.fl_str_mv |
4c5fc6ca-aa0b-48eb-a4c8-bfba5bef56b9 |
contributor_str_mv |
Fernandes, Marcio Merino |
dc.subject.por.fl_str_mv |
Explosão solar Previsão Séries temporais Mineração de dados Classificação em séries temporais Seleção de caracterı́sticas Conjunto de dados desbalanceados |
topic |
Explosão solar Previsão Séries temporais Mineração de dados Classificação em séries temporais Seleção de caracterı́sticas Conjunto de dados desbalanceados Solar flare Forecasting Time series Data mining Classifiers Time series classification Feature selection Imbalanced dataset CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Solar flare Forecasting Time series Data mining Classifiers Time series classification Feature selection Imbalanced dataset |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Solar flares are huge releases of energy from the Sun. They are categorized in five levels according to their potential damage to Earth (A, B, C, M, and X) and may produce strong impacts to communication systems, threatening human activities dependent on satellites and GPS. Therefore, predicting it in advance may reduce their negative impacts. However, solar flare forecasting has significant challenges: (a) the sequence of data influences the phenomena and should be tracked; (b) the features and intervals that cause and influence the phenomena are not defined; (c) the forecasting should be performed in an affordable time; (d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish, (f) the majority approaches perform binary forecasting (aggregating solar flare classes), instead of multi-class, as actually required. This work proposed a method that tackles these challenges simultaneously, being different from previous works, which tend to handle a challenge per time. First, we aimed to forecast the X-ray levels expected for the next few days. We proposed the SeMiner method that allows the labels prediction given past observations. SeMiner processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al- gorithm through a sliding window approach configured by a domain specialist. This method allows to consider the sequence of instances in the mining process, handling challenge (a). Next, feature selection is employed in order to determine which interval of data in the time series, most influences the forecasting process, handling challenge (b). Then, the processed sequences are submitted to a traditional classifier to generate a model that predicts future X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec- tively for True Positive and True Negative Rates. Second, we parallelized SS to increase its performance, in order to tackle issue (c), by implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in its time processing due to the distribution of the processing among the GPUs (Graphics Processing Unit). Third, we improved SeMiner to tackle the remaining challenges by developing a new method called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class, ECID employs a stratified random sampling for training binary-class base inducers, strength- ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue (d). Using a modified bootstrap approach, an aggregation method combines the inducers results, enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of 97%, in a time horizon of one day. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-08-08T16:54:26Z |
dc.date.available.fl_str_mv |
2019-08-08T16:54:26Z |
dc.date.issued.fl_str_mv |
2019-06-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DISCOLA JUNIOR, Sérgio Luisir. Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11645. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/11645 |
identifier_str_mv |
DISCOLA JUNIOR, Sérgio Luisir. Enhancing solar flare forecasting: a multi-class and multi-label classification approach to handle imbalanced time series. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11645. |
url |
https://repositorio.ufscar.br/handle/ufscar/11645 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 |
dc.relation.authority.fl_str_mv |
5ec67636-e6e1-4201-9dca-1285b3be1bab |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/11645/1/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf https://repositorio.ufscar.br/bitstream/ufscar/11645/3/license.txt https://repositorio.ufscar.br/bitstream/ufscar/11645/4/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/11645/5/00_Tese_SergioLuisirDiscolaJuniorDepositadaBCO.pdf.jpg |
bitstream.checksum.fl_str_mv |
b28312a8d132689811b2f5433f9cc689 ae0398b6f8b235e40ad82cba6c50031d f434d9db8fa251a963a22147b81d230a 6e6b2e888c768af10378d94e5add8ed6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715606385459200 |