Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.

Detalhes bibliográficos
Autor(a) principal: Souza, Vanessa Ribeiro de
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/3854
Resumo: Penicillin G acylase (PGA) is an important enzyme for industry, used to produce aminopenicillanic acid, a key intermediate in the synthesis of ampicillin, among other betalatam antibiotics. The production of this enzyme by Bacillus megaterium has been studied by the research group for several years. This work advances this research, aiming not only at the enhancement of the enzyme production, but also at a better understanding of B. megaterium regulatory expression mechanisms for PGA. A systematic study of the inoculum, including conservation strategies for the microorganism, was performed. Different cultivation media and operational conditions for the production of PGA were investigated, especially temperature and dissolved oxygen concentration. Enzyme recovery was also studied, including methodologies for minimizing protein contents in whey. Cheese whey is an important nutrient for enzyme production, but its use implies the presence of contaminant proteins in the culture broth. Finally, the enzyme was kinetically characterized. During the inoculum study, PGA yields of microorganisms conserved using different techniques were compared: endospores in 20%-glycerol, -50oC (cryotubes), endospores in solid medium, in refrigerator ( slants ) and vegetative cells in 5%-glycerol, -50oC ( eppendorffs ). It was observed that cryotubes (frozen spores) preserve the enzyme production levels for 12 months, 521 IU/L ±20 IU/L with great reproducibility. Conservation in slants shows a marked fall of production after one month, with a low reproducibility along months. Freezing vegetative cells leads to the highest patterns of enzyme production, up to 900 IU/L, but preservation is sustained for only five months. Maximum specific growth rates changed according to the conservation method, with µmax eppendofor > cryotube > slant . A study of the effect of the inoculum growth period on enzyme yield has shown that, for the three conservation methods, harvesting between 8 and 12 h leaded to similar cell mass and enzyme concentrations after 24 h of cultivation. The procedure of harvesting the inoculum after 12 h, with 10%-bioreactor inoculum volume, showed to be a good method for inoculum standardization. The effect of temperature on the cultivation of B. megaterium for production of PGA was assessed in the range 24-40oC. Maximum cell concentration and maximum enzyme yield were achieved at 30oC. The effect of the concentration of dissolved oxygen on the production of PGA was studied, using air to feed the bioreactor (culture medium volume: 1.2-2.0 L). A second B. megaterium strain showed a lower growth rate than the original one, demanding 24 h for germination/propagation, while the original one requires 12 h. Thus, different oxygen (air) feeding strategies were tested for both strains. Along the years, enzyme yields in agitated flasks have been higher than in bioreactor, for almost all assays. For the second strain, sustaining the dissolved oxygen at 10% of saturation leaded to the highest enzyme productivity among all tested conditions, with a bioreactor productivity similar to the agitated flasks. For the original strain a similar production was only achieved with an increasing stirring profile, implying a very low dissolved oxygen concentration, equal to zero during long periods of the cultivation. The two strains presented different dissolved oxygen requirements. Changes in the cultivation medium also implied different dissolved oxygen requirements for a maximum enzyme yield. Cheese whey has a still no-identified substance that is an essential nutrient for enzyme production. The use of enzymatically hydrolyzed cheese whey improves the downstream process. Assays in agitated flasks, with the original strain, using hydrolyzed whey, leaded to PGA levels similar to the ones obtained using integral whey. However, in bioreactor the yield of enzyme was always lower than in agitated flasks, no matter the aeration strategy that was used. Three possible explanations for this fact were investigated: 1) microorganism preservation method; 2) changes in the time necessary for attaining and sustaining the metabolic state where enzyme expression occurs, what could be related to the ratio between vegetative cells and spores along time, in flasks and in the bioreactor; 3) increase in the production of proteases in the bioreactor, compared to the flasks. The lower yield using hydrolyzed whey does not seem to be related to none of these hypotheses, and up to now it was not possible to generalize the study of the effect of this variable on the PGA production by B. megaterium. Enzyme purification and concentration, via ultra-diafiltration, in the presence of integral and hydrolyzed whey was another subject for research. The effect of pH and of the number of washing cycles on enzyme recovery was assessed. Results showed that this technique is efficient, provided it is run at low temperatures. Hydrolyzed whey indeed eases the purification of the enzyme using membranes, and great part of the contaminant whey proteins can be removed. However, an expressive loss of PGA occurs during the diafiltration stages, which must be minimized. pH did not influence enzyme recovery. The kinetic characterization of the produced enzyme, using the hydrolysis of penicillin G as standard reaction, has showed that maximum PGA activity is at pH 8 and 37oC. Estimated Michelis-Menten parameters were Vmax= 0.0344 mMPenG/min and Km=1.83 mM, with activation energy equal to 27.12 KJ/mol.
id SCAR_8a086808c950cb6a9df70510e6aad11e
oai_identifier_str oai:repositorio.ufscar.br:ufscar/3854
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Souza, Vanessa Ribeiro deGiordano, Raquel de Lima Camargohttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0http://lattes.cnpq.br/3368639921194981d89ce25a-2426-4632-ac84-d32344af2d2e2016-06-02T19:55:21Z2007-11-232016-06-02T19:55:21Z2007-08-16SOUZA, Vanessa Ribeiro de. Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.. 2007. 277 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2007.https://repositorio.ufscar.br/handle/ufscar/3854Penicillin G acylase (PGA) is an important enzyme for industry, used to produce aminopenicillanic acid, a key intermediate in the synthesis of ampicillin, among other betalatam antibiotics. The production of this enzyme by Bacillus megaterium has been studied by the research group for several years. This work advances this research, aiming not only at the enhancement of the enzyme production, but also at a better understanding of B. megaterium regulatory expression mechanisms for PGA. A systematic study of the inoculum, including conservation strategies for the microorganism, was performed. Different cultivation media and operational conditions for the production of PGA were investigated, especially temperature and dissolved oxygen concentration. Enzyme recovery was also studied, including methodologies for minimizing protein contents in whey. Cheese whey is an important nutrient for enzyme production, but its use implies the presence of contaminant proteins in the culture broth. Finally, the enzyme was kinetically characterized. During the inoculum study, PGA yields of microorganisms conserved using different techniques were compared: endospores in 20%-glycerol, -50oC (cryotubes), endospores in solid medium, in refrigerator ( slants ) and vegetative cells in 5%-glycerol, -50oC ( eppendorffs ). It was observed that cryotubes (frozen spores) preserve the enzyme production levels for 12 months, 521 IU/L ±20 IU/L with great reproducibility. Conservation in slants shows a marked fall of production after one month, with a low reproducibility along months. Freezing vegetative cells leads to the highest patterns of enzyme production, up to 900 IU/L, but preservation is sustained for only five months. Maximum specific growth rates changed according to the conservation method, with µmax eppendofor > cryotube > slant . A study of the effect of the inoculum growth period on enzyme yield has shown that, for the three conservation methods, harvesting between 8 and 12 h leaded to similar cell mass and enzyme concentrations after 24 h of cultivation. The procedure of harvesting the inoculum after 12 h, with 10%-bioreactor inoculum volume, showed to be a good method for inoculum standardization. The effect of temperature on the cultivation of B. megaterium for production of PGA was assessed in the range 24-40oC. Maximum cell concentration and maximum enzyme yield were achieved at 30oC. The effect of the concentration of dissolved oxygen on the production of PGA was studied, using air to feed the bioreactor (culture medium volume: 1.2-2.0 L). A second B. megaterium strain showed a lower growth rate than the original one, demanding 24 h for germination/propagation, while the original one requires 12 h. Thus, different oxygen (air) feeding strategies were tested for both strains. Along the years, enzyme yields in agitated flasks have been higher than in bioreactor, for almost all assays. For the second strain, sustaining the dissolved oxygen at 10% of saturation leaded to the highest enzyme productivity among all tested conditions, with a bioreactor productivity similar to the agitated flasks. For the original strain a similar production was only achieved with an increasing stirring profile, implying a very low dissolved oxygen concentration, equal to zero during long periods of the cultivation. The two strains presented different dissolved oxygen requirements. Changes in the cultivation medium also implied different dissolved oxygen requirements for a maximum enzyme yield. Cheese whey has a still no-identified substance that is an essential nutrient for enzyme production. The use of enzymatically hydrolyzed cheese whey improves the downstream process. Assays in agitated flasks, with the original strain, using hydrolyzed whey, leaded to PGA levels similar to the ones obtained using integral whey. However, in bioreactor the yield of enzyme was always lower than in agitated flasks, no matter the aeration strategy that was used. Three possible explanations for this fact were investigated: 1) microorganism preservation method; 2) changes in the time necessary for attaining and sustaining the metabolic state where enzyme expression occurs, what could be related to the ratio between vegetative cells and spores along time, in flasks and in the bioreactor; 3) increase in the production of proteases in the bioreactor, compared to the flasks. The lower yield using hydrolyzed whey does not seem to be related to none of these hypotheses, and up to now it was not possible to generalize the study of the effect of this variable on the PGA production by B. megaterium. Enzyme purification and concentration, via ultra-diafiltration, in the presence of integral and hydrolyzed whey was another subject for research. The effect of pH and of the number of washing cycles on enzyme recovery was assessed. Results showed that this technique is efficient, provided it is run at low temperatures. Hydrolyzed whey indeed eases the purification of the enzyme using membranes, and great part of the contaminant whey proteins can be removed. However, an expressive loss of PGA occurs during the diafiltration stages, which must be minimized. pH did not influence enzyme recovery. The kinetic characterization of the produced enzyme, using the hydrolysis of penicillin G as standard reaction, has showed that maximum PGA activity is at pH 8 and 37oC. Estimated Michelis-Menten parameters were Vmax= 0.0344 mMPenG/min and Km=1.83 mM, with activation energy equal to 27.12 KJ/mol.Penicilina G acilase (PGA) é uma importante enzima industrial usada para produção do ácido 6-aminopenicilânico, intermediário chave na produção de ampicilina e outros antibióticos β- lactâmicos semi-sintéticos. A produção dessa enzima por Bacillus megaterium vem sendo estudada no grupo há muitos anos. Esta tese dá continuidade a esse estudo visando não só aumento da produção da enzima, mas também um melhor entendimento dos mecanismos regulatórios da expressão de PGA por B. megaterium. Neste trabalho foi realizado um estudo sistemático do inóculo, incluindo estratégias para conservação do microrganismo. Foram investigados diferentes meios de cultura e condições operacionais de cultivo na produção de PGA, em especial temperatura e concentração de oxigênio dissolvido. A recuperação da enzima foi também estudada, incluindo metodologias para minimização do conteúdo de proteínas presentes no soro de queijo, um nutriente importante na produção da enzima, mas cujo uso implica também a presença de proteínas contaminantes no meio de cultivo. Finalmente, a enzima foi caracterizada cineticamente. No estudo do inóculo foram comparados, ao longo do tempo, os desempenhos na produção de PGA de microrganismos conservados como endósporos em glicerol 20% v/v, a -70°C (criotubos), como endósporos conservados em meio sólido a 4ºC ( slants ) e como células vegetativas em glicerol 8% v/v, a -70°C ( eppendorfs ). Verificou-se que sob a forma de esporos congelados (criotubos) há preservação dos níveis de produção da enzima até 12 meses, 521 UI/L ± 20 UI/L, com grande reprodutibilidade. Conservação como slants além de mostrar variabilidade ao longo dos meses, apresenta queda acentuada desde o primeiro mês de conservação. Congelamento de células vegetativas conduz a níveis mais altos de produção da enzima, 900 UI/L, mas preserva atividade apenas durante cinco meses. Velocidades específicas máximas de crescimento dos microrganismos variaram com a forma de conservação, com µmáx eppendorf > criotubo > slant . Estudo do efeito do tempo de crescimento do inóculo na produção da enzima mostrou que, para as três formas de conservação estudada, a colheita do microrganismo entre 8 e 12 horas de cultivo conduzia a produções de enzima e concentração do microrganismo similares após 24 horas de produção. O procedimento de colheita após 12 horas de cultivo, com inoculação de 10% do volume de biorreator, mostrou-se, assim, um bom critério para padronização do inóculo. Foi estudada a influência da temperatura no cultivo de B. megaterium para produção de PGA na faixa entre 25-40°C. Os resultados mostraram que a máxima concentração celular e a máxima produção da enzima ocorrem no cultivo a 30°C. O efeito da concentração de oxigênio dissolvido na produção de PGA foi extensamente estudado, sendo o biorreator (volume de meio: 1,2-2,0 L) alimentado com ar. Uma segunda linhagem de B. megaterium mostrou crescimento mais lento que a original, requerendo 24 horas para a fase de germinação/propagação, enquanto que a original requer 12 horas. Foi, assim, efetuado estudo em biorreator com diferentes estratégias de fornecimento de oxigênio (ar) para as duas linhagens. Ao longo dos anos, a produção de enzima em frascos agitados vem se mostrando maior que a obtida em biorreator em quase todos os ensaios realizados. A segunda linhagem mostrou de forma clara que a manutenção da concentração de oxigênio dissolvido em 10% da saturação conduzia à maior produção da enzima dentre todas as condições testadas, com produção em biorreator similar à obtida em frasco agitado, 450 UI/L. Entretanto, produção em biorreator similar à obtida em frasco agitado, 550-600UI/L, só foi obtida com a linhagem original usando-se um perfil crescente de agitação, que implicava concentração de oxigênio dissolvido muito baixa, permanecendo em zero por vários períodos ao longo do cultivo. As duas linhagens apresentaram, portanto, requerimentos diferenciados para o oxigênio dissolvido. Alterações no meio de cultivo também alteram o requerimento de oxigênio dissolvido para obtenção da máxima produção da enzima. Soro de queijo possui um fator que ainda não foi possível identificar que é nutriente essencial para a produção da enzima. O uso de soro hidrolisado permite melhor recuperação da enzima. Ensaios em frascos agitados, com a linhagem original, na presença de soro hidrolisado, conduziram a níveis de PGA similares aos obtidos com soro integral. Contudo, em biorreator, para todas as condições de oxigênio dissolvido testadas a produção da enzima era inferior à obtida em frascos agitados, qualquer que fosse a estratégia de aeração usada. Foram investigadas três possíveis explicações para esse fato: 1) forma de preservação do microrganismo; 2) alteração no tempo para se atingir e/ou manter o estágio metabólico onde ocorre expressão da enzima, o que poderia estar relacionado com a proporção entre células vegetativas/esporos ao longo do tempo em frascos agitados e biorreator; 3) aumento na produção de proteases no ensaio em biorreator em relação ao ensaio em frasco agitado. A menor produção com soro hidrolisado não parece estar relacionada com nenhuma dessas hipóteses, não tendo sido possível, portanto, até o momento, generalizar o estudo do efeito dessa variável na produção de PGA por B. megaterium. Foi efetuado estudo da concentração e purificação da enzima produzida na presença de soro integral e hidrolisado, através de ultra-diafiltração. Foi estudado o efeito do pH e do número de lavagens na recuperação da enzima. Resultados obtidos mostraram eficiência da técnica para concentração da enzima, se realizada a baixa temperatura. Mostraram também que soro hidrolisado realmente facilita a purificação da enzima através da filtração em membrana, permitindo remoção de grande parte das proteínas contaminantes introduzidas no meio com o soro de queijo. Contudo, ocorre expressiva perda de PGA durante as etapas de diafiltração, que devem ser minimizadas. O pH não influenciou na recuperação da enzima. Caracterização cinética da enzima produzida para a hidrólise de penicilina G mostrou que a máxima atividade de PGA ocorre a pH 8 e temperatura de 37°C. Os valores estimados para os parâmetros cinéticos de Michaelis-Menten foram de Vmáx e Km de 0,0344 mMPenG/min e 1,83 mM, respectivamente, com energia de ativação de 27,12 KJ/mol.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarBREnzimasPenicilina G acilaseBacillus megateriumAminoácidosSoro de queijoOxigênio dissolvidoENGENHARIAS::ENGENHARIA QUIMICADiferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-187b60e6c-591e-4a38-94f3-e75e2beebea0info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseVRS.pdfapplication/pdf5281242https://repositorio.ufscar.br/bitstream/ufscar/3854/1/TeseVRS.pdf8ae3e0f5731bedd5705926ff0020de41MD51THUMBNAILTeseVRS.pdf.jpgTeseVRS.pdf.jpgIM Thumbnailimage/jpeg6668https://repositorio.ufscar.br/bitstream/ufscar/3854/2/TeseVRS.pdf.jpgc69eb55b96711c5d8970d553cc0db914MD52ufscar/38542023-09-18 18:30:57.901oai:repositorio.ufscar.br:ufscar/3854Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
title Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
spellingShingle Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
Souza, Vanessa Ribeiro de
Enzimas
Penicilina G acilase
Bacillus megaterium
Aminoácidos
Soro de queijo
Oxigênio dissolvido
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
title_full Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
title_fullStr Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
title_full_unstemmed Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
title_sort Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.
author Souza, Vanessa Ribeiro de
author_facet Souza, Vanessa Ribeiro de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3368639921194981
dc.contributor.author.fl_str_mv Souza, Vanessa Ribeiro de
dc.contributor.advisor1.fl_str_mv Giordano, Raquel de Lima Camargo
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0
dc.contributor.authorID.fl_str_mv d89ce25a-2426-4632-ac84-d32344af2d2e
contributor_str_mv Giordano, Raquel de Lima Camargo
dc.subject.por.fl_str_mv Enzimas
Penicilina G acilase
Bacillus megaterium
Aminoácidos
Soro de queijo
Oxigênio dissolvido
topic Enzimas
Penicilina G acilase
Bacillus megaterium
Aminoácidos
Soro de queijo
Oxigênio dissolvido
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Penicillin G acylase (PGA) is an important enzyme for industry, used to produce aminopenicillanic acid, a key intermediate in the synthesis of ampicillin, among other betalatam antibiotics. The production of this enzyme by Bacillus megaterium has been studied by the research group for several years. This work advances this research, aiming not only at the enhancement of the enzyme production, but also at a better understanding of B. megaterium regulatory expression mechanisms for PGA. A systematic study of the inoculum, including conservation strategies for the microorganism, was performed. Different cultivation media and operational conditions for the production of PGA were investigated, especially temperature and dissolved oxygen concentration. Enzyme recovery was also studied, including methodologies for minimizing protein contents in whey. Cheese whey is an important nutrient for enzyme production, but its use implies the presence of contaminant proteins in the culture broth. Finally, the enzyme was kinetically characterized. During the inoculum study, PGA yields of microorganisms conserved using different techniques were compared: endospores in 20%-glycerol, -50oC (cryotubes), endospores in solid medium, in refrigerator ( slants ) and vegetative cells in 5%-glycerol, -50oC ( eppendorffs ). It was observed that cryotubes (frozen spores) preserve the enzyme production levels for 12 months, 521 IU/L ±20 IU/L with great reproducibility. Conservation in slants shows a marked fall of production after one month, with a low reproducibility along months. Freezing vegetative cells leads to the highest patterns of enzyme production, up to 900 IU/L, but preservation is sustained for only five months. Maximum specific growth rates changed according to the conservation method, with µmax eppendofor > cryotube > slant . A study of the effect of the inoculum growth period on enzyme yield has shown that, for the three conservation methods, harvesting between 8 and 12 h leaded to similar cell mass and enzyme concentrations after 24 h of cultivation. The procedure of harvesting the inoculum after 12 h, with 10%-bioreactor inoculum volume, showed to be a good method for inoculum standardization. The effect of temperature on the cultivation of B. megaterium for production of PGA was assessed in the range 24-40oC. Maximum cell concentration and maximum enzyme yield were achieved at 30oC. The effect of the concentration of dissolved oxygen on the production of PGA was studied, using air to feed the bioreactor (culture medium volume: 1.2-2.0 L). A second B. megaterium strain showed a lower growth rate than the original one, demanding 24 h for germination/propagation, while the original one requires 12 h. Thus, different oxygen (air) feeding strategies were tested for both strains. Along the years, enzyme yields in agitated flasks have been higher than in bioreactor, for almost all assays. For the second strain, sustaining the dissolved oxygen at 10% of saturation leaded to the highest enzyme productivity among all tested conditions, with a bioreactor productivity similar to the agitated flasks. For the original strain a similar production was only achieved with an increasing stirring profile, implying a very low dissolved oxygen concentration, equal to zero during long periods of the cultivation. The two strains presented different dissolved oxygen requirements. Changes in the cultivation medium also implied different dissolved oxygen requirements for a maximum enzyme yield. Cheese whey has a still no-identified substance that is an essential nutrient for enzyme production. The use of enzymatically hydrolyzed cheese whey improves the downstream process. Assays in agitated flasks, with the original strain, using hydrolyzed whey, leaded to PGA levels similar to the ones obtained using integral whey. However, in bioreactor the yield of enzyme was always lower than in agitated flasks, no matter the aeration strategy that was used. Three possible explanations for this fact were investigated: 1) microorganism preservation method; 2) changes in the time necessary for attaining and sustaining the metabolic state where enzyme expression occurs, what could be related to the ratio between vegetative cells and spores along time, in flasks and in the bioreactor; 3) increase in the production of proteases in the bioreactor, compared to the flasks. The lower yield using hydrolyzed whey does not seem to be related to none of these hypotheses, and up to now it was not possible to generalize the study of the effect of this variable on the PGA production by B. megaterium. Enzyme purification and concentration, via ultra-diafiltration, in the presence of integral and hydrolyzed whey was another subject for research. The effect of pH and of the number of washing cycles on enzyme recovery was assessed. Results showed that this technique is efficient, provided it is run at low temperatures. Hydrolyzed whey indeed eases the purification of the enzyme using membranes, and great part of the contaminant whey proteins can be removed. However, an expressive loss of PGA occurs during the diafiltration stages, which must be minimized. pH did not influence enzyme recovery. The kinetic characterization of the produced enzyme, using the hydrolysis of penicillin G as standard reaction, has showed that maximum PGA activity is at pH 8 and 37oC. Estimated Michelis-Menten parameters were Vmax= 0.0344 mMPenG/min and Km=1.83 mM, with activation energy equal to 27.12 KJ/mol.
publishDate 2007
dc.date.available.fl_str_mv 2007-11-23
2016-06-02T19:55:21Z
dc.date.issued.fl_str_mv 2007-08-16
dc.date.accessioned.fl_str_mv 2016-06-02T19:55:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Vanessa Ribeiro de. Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.. 2007. 277 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2007.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/3854
identifier_str_mv SOUZA, Vanessa Ribeiro de. Diferentes meios de cultivo e condições operacionais na produção de penicilina G acilase por Bacillus megaterium.. 2007. 277 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2007.
url https://repositorio.ufscar.br/handle/ufscar/3854
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 87b60e6c-591e-4a38-94f3-e75e2beebea0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/3854/1/TeseVRS.pdf
https://repositorio.ufscar.br/bitstream/ufscar/3854/2/TeseVRS.pdf.jpg
bitstream.checksum.fl_str_mv 8ae3e0f5731bedd5705926ff0020de41
c69eb55b96711c5d8970d553cc0db914
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715531048419328