$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $

Detalhes bibliográficos
Autor(a) principal: Coacalle, Joel Rogelio Portada
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/12022
Resumo: The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions.
id SCAR_95bb7fb5d8fc62c0dbfa73b031822ea1
oai_identifier_str oai:repositorio.ufscar.br:ufscar/12022
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Coacalle, Joel Rogelio PortadaHoepfner, Gustavohttp://lattes.cnpq.br/7742503790793940Raich, Andrew Sethhttps://araich.hosted.uark.edu/cvs/raich_cv.htmlhttp://lattes.cnpq.br/4153627834860786c56e9822-4876-44f3-86b3-ce79514f3bf72019-11-18T13:49:28Z2019-11-18T13:49:28Z2019-08-02COACALLE, Joel Rogelio Portada. $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12022.https://repositorio.ufscar.br/handle/ufscar/12022The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions.O objetivo de este trabalho é estabelecer condições suficientes para estimativas de imagem fechada sob $ (0,q) $-formas, com $ q $ fixo e $ 1\leq q\leq n-1 $, para $ \bar\partial_b $ nos espaços $ L^2 $ e $L^2$ Sobolev sob variedades CR do tipo hipersuperfície. A condição, chamada $ Y(q) $ fraca, é mais geral do que as condições suficientes estabelecidas anteriormente e é mais fácil de verificar. As aplicações de nossas estimativas incluem estimativas para a projeção Szeg\"o, bem como um argumento de que as formas harmônicas têm a mesma regularidade que o operador Green complexo. Utilizamos um argumento microlocal e construímos cuidadosamente uma norma que é adequada para uma decomposição microlocal das formas. Não exigimos que a variedade CR seja a fronteira de um domínio. Finalmente, fornecemos um exemplo que demonstra que a condição $ Y (q) $ fraca é uma condição mais fácil de verificar que as versões anteriores menos gerais.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Finance Code 001CAPES/PDSE: 88881.135461/2016-01engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessOperador de Cauchy RiemannOperador Tangencial de Cauchy RiemannVariedade CRCondição Y(q) fracaEstimativas de imagem fechadaCauchy Riemann operatorTangential Cauchy Riemann operatorCR manifoldsWeak Y(q) conditionClosed range estimatesCIENCIAS EXATAS E DA TERRA::MATEMATICA$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $Estimativas $L^2$ para os operadores $\bar\partial$ e $\bar\partial_b$info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600f9242c44-74f2-4cbb-a126-ba1ee0742cd4reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseJoelCoacalle.pdfTeseJoelCoacalle.pdfTeseapplication/pdf1052348https://repositorio.ufscar.br/bitstream/ufscar/12022/1/TeseJoelCoacalle.pdfb8deabf1892a4cf3badea084408acf60MD51Cartacomprovanteversãofinal.pdfCartacomprovanteversãofinal.pdfCarta Comprovanteapplication/pdf218633https://repositorio.ufscar.br/bitstream/ufscar/12022/2/Cartacomprovantevers%c3%a3ofinal.pdfc12dff7f81b5d5ed3a5a4864b7aecebaMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12022/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTeseJoelCoacalle.pdf.txtTeseJoelCoacalle.pdf.txtExtracted texttext/plain219841https://repositorio.ufscar.br/bitstream/ufscar/12022/4/TeseJoelCoacalle.pdf.txt085a05da56bc5a878ace9fda271ccab8MD54Cartacomprovanteversãofinal.pdf.txtCartacomprovanteversãofinal.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/12022/6/Cartacomprovantevers%c3%a3ofinal.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD56THUMBNAILTeseJoelCoacalle.pdf.jpgTeseJoelCoacalle.pdf.jpgIM Thumbnailimage/jpeg4747https://repositorio.ufscar.br/bitstream/ufscar/12022/5/TeseJoelCoacalle.pdf.jpgdfe9b77ff1cceb942d91bb2b9fcf5b43MD55Cartacomprovanteversãofinal.pdf.jpgCartacomprovanteversãofinal.pdf.jpgIM Thumbnailimage/jpeg13729https://repositorio.ufscar.br/bitstream/ufscar/12022/7/Cartacomprovantevers%c3%a3ofinal.pdf.jpg37acaa12fefa5a2250780d57323bd4e6MD57ufscar/120222023-09-18 18:31:45.861oai:repositorio.ufscar.br:ufscar/12022Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:45Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
dc.title.alternative.por.fl_str_mv Estimativas $L^2$ para os operadores $\bar\partial$ e $\bar\partial_b$
title $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
spellingShingle $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
Coacalle, Joel Rogelio Portada
Operador de Cauchy Riemann
Operador Tangencial de Cauchy Riemann
Variedade CR
Condição Y(q) fraca
Estimativas de imagem fechada
Cauchy Riemann operator
Tangential Cauchy Riemann operator
CR manifolds
Weak Y(q) condition
Closed range estimates
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
title_full $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
title_fullStr $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
title_full_unstemmed $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
title_sort $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
author Coacalle, Joel Rogelio Portada
author_facet Coacalle, Joel Rogelio Portada
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4153627834860786
dc.contributor.author.fl_str_mv Coacalle, Joel Rogelio Portada
dc.contributor.advisor1.fl_str_mv Hoepfner, Gustavo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7742503790793940
dc.contributor.advisor-co1.fl_str_mv Raich, Andrew Seth
dc.contributor.advisor-co1Lattes.fl_str_mv https://araich.hosted.uark.edu/cvs/raich_cv.html
dc.contributor.authorID.fl_str_mv c56e9822-4876-44f3-86b3-ce79514f3bf7
contributor_str_mv Hoepfner, Gustavo
Raich, Andrew Seth
dc.subject.por.fl_str_mv Operador de Cauchy Riemann
Operador Tangencial de Cauchy Riemann
Variedade CR
Condição Y(q) fraca
Estimativas de imagem fechada
topic Operador de Cauchy Riemann
Operador Tangencial de Cauchy Riemann
Variedade CR
Condição Y(q) fraca
Estimativas de imagem fechada
Cauchy Riemann operator
Tangential Cauchy Riemann operator
CR manifolds
Weak Y(q) condition
Closed range estimates
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Cauchy Riemann operator
Tangential Cauchy Riemann operator
CR manifolds
Weak Y(q) condition
Closed range estimates
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-11-18T13:49:28Z
dc.date.available.fl_str_mv 2019-11-18T13:49:28Z
dc.date.issued.fl_str_mv 2019-08-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COACALLE, Joel Rogelio Portada. $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12022.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/12022
identifier_str_mv COACALLE, Joel Rogelio Portada. $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12022.
url https://repositorio.ufscar.br/handle/ufscar/12022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv f9242c44-74f2-4cbb-a126-ba1ee0742cd4
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/12022/1/TeseJoelCoacalle.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12022/2/Cartacomprovantevers%c3%a3ofinal.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12022/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/12022/4/TeseJoelCoacalle.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12022/6/Cartacomprovantevers%c3%a3ofinal.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12022/5/TeseJoelCoacalle.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/12022/7/Cartacomprovantevers%c3%a3ofinal.pdf.jpg
bitstream.checksum.fl_str_mv b8deabf1892a4cf3badea084408acf60
c12dff7f81b5d5ed3a5a4864b7aeceba
e39d27027a6cc9cb039ad269a5db8e34
085a05da56bc5a878ace9fda271ccab8
68b329da9893e34099c7d8ad5cb9c940
dfe9b77ff1cceb942d91bb2b9fcf5b43
37acaa12fefa5a2250780d57323bd4e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715609791234048