$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/12022 |
Resumo: | The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions. |
id |
SCAR_95bb7fb5d8fc62c0dbfa73b031822ea1 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/12022 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Coacalle, Joel Rogelio PortadaHoepfner, Gustavohttp://lattes.cnpq.br/7742503790793940Raich, Andrew Sethhttps://araich.hosted.uark.edu/cvs/raich_cv.htmlhttp://lattes.cnpq.br/4153627834860786c56e9822-4876-44f3-86b3-ce79514f3bf72019-11-18T13:49:28Z2019-11-18T13:49:28Z2019-08-02COACALLE, Joel Rogelio Portada. $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12022.https://repositorio.ufscar.br/handle/ufscar/12022The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions.O objetivo de este trabalho é estabelecer condições suficientes para estimativas de imagem fechada sob $ (0,q) $-formas, com $ q $ fixo e $ 1\leq q\leq n-1 $, para $ \bar\partial_b $ nos espaços $ L^2 $ e $L^2$ Sobolev sob variedades CR do tipo hipersuperfície. A condição, chamada $ Y(q) $ fraca, é mais geral do que as condições suficientes estabelecidas anteriormente e é mais fácil de verificar. As aplicações de nossas estimativas incluem estimativas para a projeção Szeg\"o, bem como um argumento de que as formas harmônicas têm a mesma regularidade que o operador Green complexo. Utilizamos um argumento microlocal e construímos cuidadosamente uma norma que é adequada para uma decomposição microlocal das formas. Não exigimos que a variedade CR seja a fronteira de um domínio. Finalmente, fornecemos um exemplo que demonstra que a condição $ Y (q) $ fraca é uma condição mais fácil de verificar que as versões anteriores menos gerais.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Finance Code 001CAPES/PDSE: 88881.135461/2016-01engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessOperador de Cauchy RiemannOperador Tangencial de Cauchy RiemannVariedade CRCondição Y(q) fracaEstimativas de imagem fechadaCauchy Riemann operatorTangential Cauchy Riemann operatorCR manifoldsWeak Y(q) conditionClosed range estimatesCIENCIAS EXATAS E DA TERRA::MATEMATICA$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $Estimativas $L^2$ para os operadores $\bar\partial$ e $\bar\partial_b$info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600f9242c44-74f2-4cbb-a126-ba1ee0742cd4reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseJoelCoacalle.pdfTeseJoelCoacalle.pdfTeseapplication/pdf1052348https://repositorio.ufscar.br/bitstream/ufscar/12022/1/TeseJoelCoacalle.pdfb8deabf1892a4cf3badea084408acf60MD51Cartacomprovanteversãofinal.pdfCartacomprovanteversãofinal.pdfCarta Comprovanteapplication/pdf218633https://repositorio.ufscar.br/bitstream/ufscar/12022/2/Cartacomprovantevers%c3%a3ofinal.pdfc12dff7f81b5d5ed3a5a4864b7aecebaMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12022/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTeseJoelCoacalle.pdf.txtTeseJoelCoacalle.pdf.txtExtracted texttext/plain219841https://repositorio.ufscar.br/bitstream/ufscar/12022/4/TeseJoelCoacalle.pdf.txt085a05da56bc5a878ace9fda271ccab8MD54Cartacomprovanteversãofinal.pdf.txtCartacomprovanteversãofinal.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/12022/6/Cartacomprovantevers%c3%a3ofinal.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD56THUMBNAILTeseJoelCoacalle.pdf.jpgTeseJoelCoacalle.pdf.jpgIM Thumbnailimage/jpeg4747https://repositorio.ufscar.br/bitstream/ufscar/12022/5/TeseJoelCoacalle.pdf.jpgdfe9b77ff1cceb942d91bb2b9fcf5b43MD55Cartacomprovanteversãofinal.pdf.jpgCartacomprovanteversãofinal.pdf.jpgIM Thumbnailimage/jpeg13729https://repositorio.ufscar.br/bitstream/ufscar/12022/7/Cartacomprovantevers%c3%a3ofinal.pdf.jpg37acaa12fefa5a2250780d57323bd4e6MD57ufscar/120222023-09-18 18:31:45.861oai:repositorio.ufscar.br:ufscar/12022Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:45Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
dc.title.alternative.por.fl_str_mv |
Estimativas $L^2$ para os operadores $\bar\partial$ e $\bar\partial_b$ |
title |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
spellingShingle |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ Coacalle, Joel Rogelio Portada Operador de Cauchy Riemann Operador Tangencial de Cauchy Riemann Variedade CR Condição Y(q) fraca Estimativas de imagem fechada Cauchy Riemann operator Tangential Cauchy Riemann operator CR manifolds Weak Y(q) condition Closed range estimates CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
title_full |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
title_fullStr |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
title_full_unstemmed |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
title_sort |
$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $ |
author |
Coacalle, Joel Rogelio Portada |
author_facet |
Coacalle, Joel Rogelio Portada |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4153627834860786 |
dc.contributor.author.fl_str_mv |
Coacalle, Joel Rogelio Portada |
dc.contributor.advisor1.fl_str_mv |
Hoepfner, Gustavo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7742503790793940 |
dc.contributor.advisor-co1.fl_str_mv |
Raich, Andrew Seth |
dc.contributor.advisor-co1Lattes.fl_str_mv |
https://araich.hosted.uark.edu/cvs/raich_cv.html |
dc.contributor.authorID.fl_str_mv |
c56e9822-4876-44f3-86b3-ce79514f3bf7 |
contributor_str_mv |
Hoepfner, Gustavo Raich, Andrew Seth |
dc.subject.por.fl_str_mv |
Operador de Cauchy Riemann Operador Tangencial de Cauchy Riemann Variedade CR Condição Y(q) fraca Estimativas de imagem fechada |
topic |
Operador de Cauchy Riemann Operador Tangencial de Cauchy Riemann Variedade CR Condição Y(q) fraca Estimativas de imagem fechada Cauchy Riemann operator Tangential Cauchy Riemann operator CR manifolds Weak Y(q) condition Closed range estimates CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Cauchy Riemann operator Tangential Cauchy Riemann operator CR manifolds Weak Y(q) condition Closed range estimates |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-11-18T13:49:28Z |
dc.date.available.fl_str_mv |
2019-11-18T13:49:28Z |
dc.date.issued.fl_str_mv |
2019-08-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
COACALLE, Joel Rogelio Portada. $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/12022 |
identifier_str_mv |
COACALLE, Joel Rogelio Portada. $L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12022. |
url |
https://repositorio.ufscar.br/handle/ufscar/12022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
f9242c44-74f2-4cbb-a126-ba1ee0742cd4 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/12022/1/TeseJoelCoacalle.pdf https://repositorio.ufscar.br/bitstream/ufscar/12022/2/Cartacomprovantevers%c3%a3ofinal.pdf https://repositorio.ufscar.br/bitstream/ufscar/12022/3/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/12022/4/TeseJoelCoacalle.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12022/6/Cartacomprovantevers%c3%a3ofinal.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12022/5/TeseJoelCoacalle.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/12022/7/Cartacomprovantevers%c3%a3ofinal.pdf.jpg |
bitstream.checksum.fl_str_mv |
b8deabf1892a4cf3badea084408acf60 c12dff7f81b5d5ed3a5a4864b7aeceba e39d27027a6cc9cb039ad269a5db8e34 085a05da56bc5a878ace9fda271ccab8 68b329da9893e34099c7d8ad5cb9c940 dfe9b77ff1cceb942d91bb2b9fcf5b43 37acaa12fefa5a2250780d57323bd4e6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715609791234048 |