Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/6183 |
Resumo: | A simultaneous optimization strategy based on neuro-genetic approach is proposed for selection of operational parameters for the simultaneous determination of macronutrients (Ca, Mg and P), micronutrients (B, Cu, Fe, Mn and Zn), Al and Si in plants by laser induced breakdown spectroscopy (LIBS). Laser pulse energy, lens-to-sample distance, number of accumulated laser pulses, delay time and integration time gate were optimized. A Q-Switched Nd: YAG laser operating in the fundamental wavelength (1064 nm) with repetition rate of 10 Hz and spectrometer with optical Echelle and ICCD detector was employed. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. Measurements of LIBS spectra were based on three replicates and each replicate consisted of an average of ten spectra collected in different sites (i.e. test portions) of the pellet. In order to find a model that could correlate LIBS operational parameters and peak areas of all elements simultaneously a Bayesian Regularized Artificial Neural Network (BRANN) approach was employed. Subsequently, genetic algorithm (GA) was applied to find the optimal parameters for the neural network model. A single LIBS working condition pointed out by genetic algorithm (GA) was obtained with the following optimized parameters: 17.5 cm lens-to-sample distance, 25 accumulated laser pulses, 2.0 μs delay time and 4.5 μs integration time gate using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared from ground plant samples. Quantitative determinations were carried out by using chemometric methods, such as PLSR and iPLS. Samples of different cultures were used. For comparative purpose, the laboratory samples were also microwave-assisted digested and further analyzed by ICP OES. In general, results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. It is demonstrated that LIBS is a powerful tool for determination of macro and micronutrients in pellets of plant materials. |
id |
SCAR_962ec6f86d07c85a05a9f408342ca515 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/6183 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Nunes, Lidiane CristinaKrug, Francisco Joséhttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783058Y5http://lattes.cnpq.br/6742187277587463bef9728d-6262-4c64-98aa-4c6e2737f0072016-06-02T20:34:24Z2011-03-102016-06-02T20:34:24Z2010-12-08NUNES, Lidiane Cristina. Chemometric strategies for plant analysis by laser induced breakdown spectrometry. 2010. 169 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2010.https://repositorio.ufscar.br/handle/ufscar/6183A simultaneous optimization strategy based on neuro-genetic approach is proposed for selection of operational parameters for the simultaneous determination of macronutrients (Ca, Mg and P), micronutrients (B, Cu, Fe, Mn and Zn), Al and Si in plants by laser induced breakdown spectroscopy (LIBS). Laser pulse energy, lens-to-sample distance, number of accumulated laser pulses, delay time and integration time gate were optimized. A Q-Switched Nd: YAG laser operating in the fundamental wavelength (1064 nm) with repetition rate of 10 Hz and spectrometer with optical Echelle and ICCD detector was employed. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. Measurements of LIBS spectra were based on three replicates and each replicate consisted of an average of ten spectra collected in different sites (i.e. test portions) of the pellet. In order to find a model that could correlate LIBS operational parameters and peak areas of all elements simultaneously a Bayesian Regularized Artificial Neural Network (BRANN) approach was employed. Subsequently, genetic algorithm (GA) was applied to find the optimal parameters for the neural network model. A single LIBS working condition pointed out by genetic algorithm (GA) was obtained with the following optimized parameters: 17.5 cm lens-to-sample distance, 25 accumulated laser pulses, 2.0 μs delay time and 4.5 μs integration time gate using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared from ground plant samples. Quantitative determinations were carried out by using chemometric methods, such as PLSR and iPLS. Samples of different cultures were used. For comparative purpose, the laboratory samples were also microwave-assisted digested and further analyzed by ICP OES. In general, results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. It is demonstrated that LIBS is a powerful tool for determination of macro and micronutrients in pellets of plant materials.Foram desenvolvidos procedimentos quimiométricos para a determinação simultânea de P, Ca, K, Mg, P, B, Cu, Fe, Mn, Zn e Al em pastilhas de folhas de plantas por espectrometria de emissão óptica com plasma induzido por laser (LIBS). Utilizou-se um laser Q-Switched Nd:YAG a 1064 nm (pulsos de 5 ns, 10 Hz, 360 mJ). e espectrômetro com óptica Echelle e detector ICCD. Para definir as condições experimentais mais apropriadas para a determinação simultânea dos elementos, empregaram-se métodos de otimização multivariada através da abordagem neuro-genética e utilizaram-se pastilhas preparadas com o material certificado de folhas de espinafre (NIST 1570a). Dez espectros acumulados foram coletados em diferentes posições da pastilha e a média desses espectros foi utilizada como uma porção amostrada. A resposta avaliada foi área dos picos de emissão. As condições otimizadas corresponderam a 110 mJ/pulso do laser, 17,5 cm de distância entre a lente de focalização do laser e a superfície da pastilha, 25 pulsos acumulados, tempo de atraso de 2,0 μs e tempo de integração de 4,5 μs. Para a determinação quantitativa dos elementos, construíram-se modelos de calibração multivariada por meio da regressão dos mínimos quadrados parciais (PLSR), selecionando-se intervalos espectrais por iPLS e/ou com base no banco de dados do NIST. Para a calibração, utilizaram-se dois conjuntos de amostras, um constituído por folhas de diferentes culturas e outro por diferentes variedades de cana-de-açúcar. De modo geral, a 95% de confiança, os resultados obtidos por LIBS com emprego de PLSR apresentaram boa concordância com os valores obtidos por espectrometria de emissão óptica com plasma acoplado indutivamente (ICP OES). Os limites de detecção estimados e os coeficientes de variação obtidos foram apropriados para análise foliar.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarBRQuímica analíticaEspectrometria de emissão óptica com plasma induzido por laserLIBSQuimiometriaCalibração multivariadaCIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICAEstratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laserChemometric strategies for plant analysis by laser induced breakdown spectrometryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-194c23903-cf2f-4419-a98f-96cd35e83879info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL3446.pdfapplication/pdf7483091https://repositorio.ufscar.br/bitstream/ufscar/6183/1/3446.pdffc0625c0cc22919a8610187324efbb40MD51THUMBNAIL3446.pdf.jpg3446.pdf.jpgIM Thumbnailimage/jpeg9080https://repositorio.ufscar.br/bitstream/ufscar/6183/2/3446.pdf.jpg05af2f8a02ff7a4ca82c80722beaeb3cMD52ufscar/61832023-09-18 18:31:10.104oai:repositorio.ufscar.br:ufscar/6183Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:10Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
dc.title.alternative.eng.fl_str_mv |
Chemometric strategies for plant analysis by laser induced breakdown spectrometry |
title |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
spellingShingle |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser Nunes, Lidiane Cristina Química analítica Espectrometria de emissão óptica com plasma induzido por laser LIBS Quimiometria Calibração multivariada CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA |
title_short |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
title_full |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
title_fullStr |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
title_full_unstemmed |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
title_sort |
Estratégias quimiométricas para análise de plantas por espectrometria de emissão óptica com plasma induzido por laser |
author |
Nunes, Lidiane Cristina |
author_facet |
Nunes, Lidiane Cristina |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6742187277587463 |
dc.contributor.author.fl_str_mv |
Nunes, Lidiane Cristina |
dc.contributor.advisor1.fl_str_mv |
Krug, Francisco José |
dc.contributor.advisor1Lattes.fl_str_mv |
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783058Y5 |
dc.contributor.authorID.fl_str_mv |
bef9728d-6262-4c64-98aa-4c6e2737f007 |
contributor_str_mv |
Krug, Francisco José |
dc.subject.por.fl_str_mv |
Química analítica Espectrometria de emissão óptica com plasma induzido por laser LIBS Quimiometria Calibração multivariada |
topic |
Química analítica Espectrometria de emissão óptica com plasma induzido por laser LIBS Quimiometria Calibração multivariada CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA |
description |
A simultaneous optimization strategy based on neuro-genetic approach is proposed for selection of operational parameters for the simultaneous determination of macronutrients (Ca, Mg and P), micronutrients (B, Cu, Fe, Mn and Zn), Al and Si in plants by laser induced breakdown spectroscopy (LIBS). Laser pulse energy, lens-to-sample distance, number of accumulated laser pulses, delay time and integration time gate were optimized. A Q-Switched Nd: YAG laser operating in the fundamental wavelength (1064 nm) with repetition rate of 10 Hz and spectrometer with optical Echelle and ICCD detector was employed. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. Measurements of LIBS spectra were based on three replicates and each replicate consisted of an average of ten spectra collected in different sites (i.e. test portions) of the pellet. In order to find a model that could correlate LIBS operational parameters and peak areas of all elements simultaneously a Bayesian Regularized Artificial Neural Network (BRANN) approach was employed. Subsequently, genetic algorithm (GA) was applied to find the optimal parameters for the neural network model. A single LIBS working condition pointed out by genetic algorithm (GA) was obtained with the following optimized parameters: 17.5 cm lens-to-sample distance, 25 accumulated laser pulses, 2.0 μs delay time and 4.5 μs integration time gate using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared from ground plant samples. Quantitative determinations were carried out by using chemometric methods, such as PLSR and iPLS. Samples of different cultures were used. For comparative purpose, the laboratory samples were also microwave-assisted digested and further analyzed by ICP OES. In general, results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. It is demonstrated that LIBS is a powerful tool for determination of macro and micronutrients in pellets of plant materials. |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-12-08 |
dc.date.available.fl_str_mv |
2011-03-10 2016-06-02T20:34:24Z |
dc.date.accessioned.fl_str_mv |
2016-06-02T20:34:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NUNES, Lidiane Cristina. Chemometric strategies for plant analysis by laser induced breakdown spectrometry. 2010. 169 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2010. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/6183 |
identifier_str_mv |
NUNES, Lidiane Cristina. Chemometric strategies for plant analysis by laser induced breakdown spectrometry. 2010. 169 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2010. |
url |
https://repositorio.ufscar.br/handle/ufscar/6183 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
94c23903-cf2f-4419-a98f-96cd35e83879 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química - PPGQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/6183/1/3446.pdf https://repositorio.ufscar.br/bitstream/ufscar/6183/2/3446.pdf.jpg |
bitstream.checksum.fl_str_mv |
fc0625c0cc22919a8610187324efbb40 05af2f8a02ff7a4ca82c80722beaeb3c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715549447782400 |