Comportamento mecânico do concreto de alta resistência reforçado com fibras

Detalhes bibliográficos
Autor(a) principal: Almeida, Ricardo Laguardia Justen de
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/19007
Resumo: The addition of fibers to concrete provides ductility and their contribution to high-strength concrete may be even more relevant due to the high brittleness of the material. Nevertheless, research in the literature investigating the mechanical behavior of high- strength fiber-reinforced concrete (HSFRC) is limited and mostly involves concrete reinforced with steel fibers. This research investigated the mechanical behavior of high-strength fiber-reinforced concrete (HSFRC) through an extensive experimental program with six different types of fiber divided into three categories according to the material of the fiber: hooked-end steel fiber, crimped steel fiber, chopped glass fiber, pultruded glass fiber, monofilament polymeric fiber and twisted polymeric fiber. Each one of these fibers was studied at three different volume fractions (Vf) (0.50%, 0.75% and 1.00%), making a total of 29 different mixes in the experimental program. The parameters analyzed were the type and fiber content and the compressive strength of the concrete (60 and 90 MPa). The mechanical behavior was investigated through compressive displacement-controlled tests to obtain the complete stress-strain curve and three-point bending tests in notched beams to determine the residual strengths. The test results showed that the addition of fibers can affect the mechanical properties of concrete, such as compressive strength, elastic modulus and peak strain, depending on the type and fiber content. Toughness, on the other hand, is clearly influenced by the fiber addition and content. In general, the greater the fiber content, the greater the toughness and residual strength in bending regardless of the fiber type. Steel fibers provided the highest toughness and residual strengths in compression, followed by glass fibers and polymeric fibers. Constitutive models in compression were proposed for each type of fiber and showed good agreement with the experimental results and can be used to estimate the ductility and toughness of the HSFRC. In bending, the limit of proportionality is slightly influenced by the fiber content and hooked-end steel fibers also provided the highest residual strengths, followed by pultruded glass fibers and crimped steel fibers, polymeric fibers and chopped glass fibers. Furthermore, the requirements of technical standards for using fibers in structural applications were discussed and must be reviewed for high-strength fiber-reinforced concrete. The experimental results of the bending tests were used in finite element modelling (FEM) to obtain the constitutive model in tension by inverse analysis. The results obtained with the numerical model showed good agreement with the experimental results in terms of toughness and proved to be a useful tool for numerical simulations of fiber- reinforced concrete. From the validation of the numerical model, multilinear constitutive models were proposed and can be used for design purposes. The analyzes carried out also demonstrated that the simplified models of the technical standard can overestimate (in the case of the linear model) or underestimate (in the case of the rigid-plastic model) the toughness of HSFRC and do not represent the post-cracking behavior of high-strength concrete reinforced with glass and polymeric fibers.
id SCAR_9713dc1358d5f5cb4f1255bec2e7d5f2
oai_identifier_str oai:repositorio.ufscar.br:ufscar/19007
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Almeida, Ricardo Laguardia Justen deParsekian, Guilherme Arishttp://lattes.cnpq.br/7798651726059215Carnio, Marco Antoniohttp://lattes.cnpq.br/9718956606062025http://lattes.cnpq.br/7352278288074474https://orcid.org/0000-0002-4251-1146https://orcid.org/0000-0002-5939-2032https://orcid.org/0000-0002-2005-85552023-12-11T17:24:57Z2023-12-11T17:24:57Z2023-11-30ALMEIDA, Ricardo Laguardia Justen de. Comportamento mecânico do concreto de alta resistência reforçado com fibras. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/19007.https://repositorio.ufscar.br/handle/ufscar/19007The addition of fibers to concrete provides ductility and their contribution to high-strength concrete may be even more relevant due to the high brittleness of the material. Nevertheless, research in the literature investigating the mechanical behavior of high- strength fiber-reinforced concrete (HSFRC) is limited and mostly involves concrete reinforced with steel fibers. This research investigated the mechanical behavior of high-strength fiber-reinforced concrete (HSFRC) through an extensive experimental program with six different types of fiber divided into three categories according to the material of the fiber: hooked-end steel fiber, crimped steel fiber, chopped glass fiber, pultruded glass fiber, monofilament polymeric fiber and twisted polymeric fiber. Each one of these fibers was studied at three different volume fractions (Vf) (0.50%, 0.75% and 1.00%), making a total of 29 different mixes in the experimental program. The parameters analyzed were the type and fiber content and the compressive strength of the concrete (60 and 90 MPa). The mechanical behavior was investigated through compressive displacement-controlled tests to obtain the complete stress-strain curve and three-point bending tests in notched beams to determine the residual strengths. The test results showed that the addition of fibers can affect the mechanical properties of concrete, such as compressive strength, elastic modulus and peak strain, depending on the type and fiber content. Toughness, on the other hand, is clearly influenced by the fiber addition and content. In general, the greater the fiber content, the greater the toughness and residual strength in bending regardless of the fiber type. Steel fibers provided the highest toughness and residual strengths in compression, followed by glass fibers and polymeric fibers. Constitutive models in compression were proposed for each type of fiber and showed good agreement with the experimental results and can be used to estimate the ductility and toughness of the HSFRC. In bending, the limit of proportionality is slightly influenced by the fiber content and hooked-end steel fibers also provided the highest residual strengths, followed by pultruded glass fibers and crimped steel fibers, polymeric fibers and chopped glass fibers. Furthermore, the requirements of technical standards for using fibers in structural applications were discussed and must be reviewed for high-strength fiber-reinforced concrete. The experimental results of the bending tests were used in finite element modelling (FEM) to obtain the constitutive model in tension by inverse analysis. The results obtained with the numerical model showed good agreement with the experimental results in terms of toughness and proved to be a useful tool for numerical simulations of fiber- reinforced concrete. From the validation of the numerical model, multilinear constitutive models were proposed and can be used for design purposes. The analyzes carried out also demonstrated that the simplified models of the technical standard can overestimate (in the case of the linear model) or underestimate (in the case of the rigid-plastic model) the toughness of HSFRC and do not represent the post-cracking behavior of high-strength concrete reinforced with glass and polymeric fibers.A adição de fibras ao concreto proporciona ductilidade e sua contribuição ao concreto de alta resistência pode ser ainda mais relevante devido à elevada fragilidade do material. Apesar disso, as pesquisas na literatura que investigam o comportamento mecânico do concreto de alta resistência reforçado com fibras (CARRF) são limitadas e envolvem majoritariamente concretos reforçados com fibras de aço. Nesse contexto, esta pesquisa investigou o comportamento mecânico do CARRF por meio de um extenso programa experimental contemplando seis tipos diferentes de fibra, divididos em três categorias conforme o material da fibra: fibra de aço com gancho, fibra de aço corrugada, fibra de vidro filamentada, fibra de vidro pultrudada, fibra polimérica monofilada e fibra polimérica torcida. Cada uma dessas fibras foi estudada em três frações volumétricas (Vf) diferentes (0,50%, 0,75% e 1,00%), formando 29 diferentes traços no programa experimental. Os parâmetros analisados foram o tipo e o teor de fibra e a resistência à compressão do concreto (60 e 90 MPa). O comportamento mecânico foi investigado por meio de ensaios de compressão por controle de deslocamento para a obtenção da curva tensão-deformação completa, enquanto ensaios de flexão em três pontos foram realizados para a determinação das resistências residuais em conformidade com a ABNT NBR 16940 (2021). Os resultados dos ensaios de compressão mostraram que a adição de fibras pode afetar as propriedades mecânicas do concreto, como resistência à compressão, módulo de elasticidade e deformação de pico, dependendo do tipo e do teor de fibra. A tenacidade, por outro lado, é claramente influenciada pela adição e teor de fibras. Em geral, quanto maior a fração volumétrica de fibras, maiores são a tenacidade e a resistência residual na compressão, independentemente do tipo de fibra. As maiores tenacidades e resistências residuais na compressão foram observadas para as fibras de aço, seguidas pelas fibras de vidro e fibras poliméricas. Modelos constitutivos na compressão foram ajustados para cada tipo de fibra e apresentaram ótima concordância com os resultados experimentais, podendo ser utilizado para estimar a ductilidade e tenacidade do CARRF para a faixa de resistência à compressão investigada. Na flexão, foi observado que o limite de proporcionalidade é levemente influenciado pelo teor de fibras, e as maiores resistências residuais foram observadas para as fibras de aço com gancho, seguidas pelas fibras de vidro pultrudadas e fibras de aço corrugadas, fibras poliméricas e fibras de vidro filamentadas. Além disso, foi observado que as condições exigidas pela norma técnica para a utilização de fibras em aplicações estruturais devem ser revistas para o concreto de alta resistência reforçado com fibras. Um modelo numérico em elementos finitos foi desenvolvido para simular os ensaios de flexão e as curvas obtidas apresentaram boa concordância com os resultados experimentais em termos de tenacidade. A partir de sua validação, modelos constitutivos multilineares foram propostos por meio de uma análise inversa e podem ser utilizados para fins de dimensionamento. As análises realizadas também demonstraram que os modelos simplificados da norma técnica podem superestimar (no caso do modelo linear) ou subestimar (no caso do modelo rígido-plástico) a tenacidade CARRF e não representam o comportamento pós-fissuração do concreto de alta resistência reforçado com fibras de vidro e poliméricas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)88887.484253/2020-00porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Civil - PPGECivUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessConcreto reforçado com fibrasModelo constitutivoResistência residualConcreto de alta resistênciaFiber-reinforced concreteConstitutive modelResidual strengthHigh-strength concreteENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASENGENHARIAS::ENGENHARIA CIVILComportamento mecânico do concreto de alta resistência reforçado com fibrasMechanical behavior of high-strength fiber-reinforced concreteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese de doutorado - Comportamento mecanico do CARRF [Versao final].pdfTese de doutorado - Comportamento mecanico do CARRF [Versao final].pdfapplication/pdf32506195https://repositorio.ufscar.br/bitstream/ufscar/19007/1/Tese%20de%20doutorado%20-%20Comportamento%20mecanico%20do%20CARRF%20%5bVersao%20final%5d.pdff8007dc460da1d41433f839a6909da57MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstream/ufscar/19007/3/license_rdff337d95da1fce0a22c77480e5e9a7aecMD53TEXTTese de doutorado - Comportamento mecanico do CARRF [Versao final].pdf.txtTese de doutorado - Comportamento mecanico do CARRF [Versao final].pdf.txtExtracted texttext/plain665799https://repositorio.ufscar.br/bitstream/ufscar/19007/4/Tese%20de%20doutorado%20-%20Comportamento%20mecanico%20do%20CARRF%20%5bVersao%20final%5d.pdf.txtacdba4cd4301548bb3afb02cbbcaa2ceMD54ufscar/190072024-05-14 17:23:57.729oai:repositorio.ufscar.br:ufscar/19007Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222024-05-14T17:23:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Comportamento mecânico do concreto de alta resistência reforçado com fibras
dc.title.alternative.eng.fl_str_mv Mechanical behavior of high-strength fiber-reinforced concrete
title Comportamento mecânico do concreto de alta resistência reforçado com fibras
spellingShingle Comportamento mecânico do concreto de alta resistência reforçado com fibras
Almeida, Ricardo Laguardia Justen de
Concreto reforçado com fibras
Modelo constitutivo
Resistência residual
Concreto de alta resistência
Fiber-reinforced concrete
Constitutive model
Residual strength
High-strength concrete
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
ENGENHARIAS::ENGENHARIA CIVIL
title_short Comportamento mecânico do concreto de alta resistência reforçado com fibras
title_full Comportamento mecânico do concreto de alta resistência reforçado com fibras
title_fullStr Comportamento mecânico do concreto de alta resistência reforçado com fibras
title_full_unstemmed Comportamento mecânico do concreto de alta resistência reforçado com fibras
title_sort Comportamento mecânico do concreto de alta resistência reforçado com fibras
author Almeida, Ricardo Laguardia Justen de
author_facet Almeida, Ricardo Laguardia Justen de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/7352278288074474
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0002-4251-1146
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0002-5939-2032
dc.contributor.advisor-co1orcid.por.fl_str_mv https://orcid.org/0000-0002-2005-8555
dc.contributor.author.fl_str_mv Almeida, Ricardo Laguardia Justen de
dc.contributor.advisor1.fl_str_mv Parsekian, Guilherme Aris
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7798651726059215
dc.contributor.advisor-co1.fl_str_mv Carnio, Marco Antonio
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9718956606062025
contributor_str_mv Parsekian, Guilherme Aris
Carnio, Marco Antonio
dc.subject.por.fl_str_mv Concreto reforçado com fibras
Modelo constitutivo
Resistência residual
Concreto de alta resistência
topic Concreto reforçado com fibras
Modelo constitutivo
Resistência residual
Concreto de alta resistência
Fiber-reinforced concrete
Constitutive model
Residual strength
High-strength concrete
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
ENGENHARIAS::ENGENHARIA CIVIL
dc.subject.eng.fl_str_mv Fiber-reinforced concrete
Constitutive model
Residual strength
High-strength concrete
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
ENGENHARIAS::ENGENHARIA CIVIL
description The addition of fibers to concrete provides ductility and their contribution to high-strength concrete may be even more relevant due to the high brittleness of the material. Nevertheless, research in the literature investigating the mechanical behavior of high- strength fiber-reinforced concrete (HSFRC) is limited and mostly involves concrete reinforced with steel fibers. This research investigated the mechanical behavior of high-strength fiber-reinforced concrete (HSFRC) through an extensive experimental program with six different types of fiber divided into three categories according to the material of the fiber: hooked-end steel fiber, crimped steel fiber, chopped glass fiber, pultruded glass fiber, monofilament polymeric fiber and twisted polymeric fiber. Each one of these fibers was studied at three different volume fractions (Vf) (0.50%, 0.75% and 1.00%), making a total of 29 different mixes in the experimental program. The parameters analyzed were the type and fiber content and the compressive strength of the concrete (60 and 90 MPa). The mechanical behavior was investigated through compressive displacement-controlled tests to obtain the complete stress-strain curve and three-point bending tests in notched beams to determine the residual strengths. The test results showed that the addition of fibers can affect the mechanical properties of concrete, such as compressive strength, elastic modulus and peak strain, depending on the type and fiber content. Toughness, on the other hand, is clearly influenced by the fiber addition and content. In general, the greater the fiber content, the greater the toughness and residual strength in bending regardless of the fiber type. Steel fibers provided the highest toughness and residual strengths in compression, followed by glass fibers and polymeric fibers. Constitutive models in compression were proposed for each type of fiber and showed good agreement with the experimental results and can be used to estimate the ductility and toughness of the HSFRC. In bending, the limit of proportionality is slightly influenced by the fiber content and hooked-end steel fibers also provided the highest residual strengths, followed by pultruded glass fibers and crimped steel fibers, polymeric fibers and chopped glass fibers. Furthermore, the requirements of technical standards for using fibers in structural applications were discussed and must be reviewed for high-strength fiber-reinforced concrete. The experimental results of the bending tests were used in finite element modelling (FEM) to obtain the constitutive model in tension by inverse analysis. The results obtained with the numerical model showed good agreement with the experimental results in terms of toughness and proved to be a useful tool for numerical simulations of fiber- reinforced concrete. From the validation of the numerical model, multilinear constitutive models were proposed and can be used for design purposes. The analyzes carried out also demonstrated that the simplified models of the technical standard can overestimate (in the case of the linear model) or underestimate (in the case of the rigid-plastic model) the toughness of HSFRC and do not represent the post-cracking behavior of high-strength concrete reinforced with glass and polymeric fibers.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-12-11T17:24:57Z
dc.date.available.fl_str_mv 2023-12-11T17:24:57Z
dc.date.issued.fl_str_mv 2023-11-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALMEIDA, Ricardo Laguardia Justen de. Comportamento mecânico do concreto de alta resistência reforçado com fibras. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/19007.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/19007
identifier_str_mv ALMEIDA, Ricardo Laguardia Justen de. Comportamento mecânico do concreto de alta resistência reforçado com fibras. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/19007.
url https://repositorio.ufscar.br/handle/ufscar/19007
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Civil - PPGECiv
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/19007/1/Tese%20de%20doutorado%20-%20Comportamento%20mecanico%20do%20CARRF%20%5bVersao%20final%5d.pdf
https://repositorio.ufscar.br/bitstream/ufscar/19007/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/19007/4/Tese%20de%20doutorado%20-%20Comportamento%20mecanico%20do%20CARRF%20%5bVersao%20final%5d.pdf.txt
bitstream.checksum.fl_str_mv f8007dc460da1d41433f839a6909da57
f337d95da1fce0a22c77480e5e9a7aec
acdba4cd4301548bb3afb02cbbcaa2ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715672701599744