Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada

Detalhes bibliográficos
Autor(a) principal: Benittez, Lívia Regueira Fortunato
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11110
Resumo: The construction sector stands out as responsible for the emission by third of the total greenhouse gases emitted by mankind. The processes of extraction and manufacture of the raw materials, necessary to obtain the concrete, emit large amounts of CO2 to the environment. However, several researches have shown that Portland cement based materials have the capacity to permanently store CO2 in the cement matrix in the form of stable calcium carbonate (CaCO3), through accelerated carbonation curing. In the carbonation reaction the carbon dioxide (CO2) reacts mainly with the calcium hydroxide (Ca(OH)2) and the hydrated calcium silicates (C - S - H), generating CaCO3, which precipitates mineralogically as calcite, vaterita and aragonite. The literature shows that the precipitation of CaCO3 in the pores of the cementitious material alters the porosity, increases the density and promotes the improvement of the physical and mechanical properties of the material, besides contributing to the environment by definitively incorporating CO2. This technology has been applied in non-reinforced steel components, such as concrete structural and non-structural masonry blocks, tiles, boards, among others; with a lack of studies related to the concrete units for pavement. Aforesaid, the present research aimed to verify, to analyze and to measure the capture of carbon dioxide (CO2) in concrete units for pavement after the accelerated carbonation curing process; to verify the applicability of the experimental procedure related to the Mass Gain Method used to obtain the value of CO2 absorption; if there was an improvement in the physical and mechanical properties of carbonated concrete units for pavement (PCPs) regarding those one made up by conventional process. To do this, some specimens, produced in an industrial scale, were preliminarily submitted to 12 hours of initial steam cure and 12 hours without initial steam cure, followed by accelerated carbonatation curing for 4 and 16 hours, this occurred in a carbonation chamber set up with 20 % CO2 concentration, 23°C and 65% relative humidity. subsequently, the absorption of CO2 was measured by the Mass Gain Method and checked out by sprinkling the acid-base indicator phenolphthalein; and the mechanical properties were measured at 02 and 28 days, by compressive tests, abrasion resistance test and water absorption test. The results indicated that the Mass Gain Method is feasible to obtain the percentage of the CO2 absorption; all the samples submitted to accelerated carbonation treatment captured CO2, the highest absorption found was 5.1% for the PCPs submitted to 12 hours without initial steam cure with a subsequent 16 hours of carbonation; in addition, the compressive strength gain in the carbonated samples was verified, and at the 02 days this presented better resistance to the axial compression of 40.7 MPa, to the detriment of the reference PCPs (non-carbonated) that presented 37,2 MPa; and at 28 days the best results were again verified for the carbonated PCPs (46.4MPa) in detriment to the reference PCPs (40.7MPa); as for abrasion resistance and water absorption, the carbonated and reference PCPs did not present a significant difference. Therefore, it was concluded that the accelerated carbonation cure procedure in addition to the environmental improvement regarding the CO2 capture, promotes the speed up of the PCP manufacturing, since the carbonated samples presented high compressive strength at early ages.
id SCAR_9c5a86524f2b434c2e7d0bcf774b2ba6
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11110
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Benittez, Lívia Regueira FortunatoParsekian, Guilherme Arishttp://lattes.cnpq.br/7798651726059215Neves Junior, Alexhttp://lattes.cnpq.br/8587525595571228http://lattes.cnpq.br/758243778779427941169340-893f-460c-a953-c3f675e8a16f2019-03-20T22:18:59Z2019-03-20T22:18:59Z2019-02-28BENITTEZ, Lívia Regueira Fortunato. Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada. 2019. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11110.https://repositorio.ufscar.br/handle/ufscar/11110The construction sector stands out as responsible for the emission by third of the total greenhouse gases emitted by mankind. The processes of extraction and manufacture of the raw materials, necessary to obtain the concrete, emit large amounts of CO2 to the environment. However, several researches have shown that Portland cement based materials have the capacity to permanently store CO2 in the cement matrix in the form of stable calcium carbonate (CaCO3), through accelerated carbonation curing. In the carbonation reaction the carbon dioxide (CO2) reacts mainly with the calcium hydroxide (Ca(OH)2) and the hydrated calcium silicates (C - S - H), generating CaCO3, which precipitates mineralogically as calcite, vaterita and aragonite. The literature shows that the precipitation of CaCO3 in the pores of the cementitious material alters the porosity, increases the density and promotes the improvement of the physical and mechanical properties of the material, besides contributing to the environment by definitively incorporating CO2. This technology has been applied in non-reinforced steel components, such as concrete structural and non-structural masonry blocks, tiles, boards, among others; with a lack of studies related to the concrete units for pavement. Aforesaid, the present research aimed to verify, to analyze and to measure the capture of carbon dioxide (CO2) in concrete units for pavement after the accelerated carbonation curing process; to verify the applicability of the experimental procedure related to the Mass Gain Method used to obtain the value of CO2 absorption; if there was an improvement in the physical and mechanical properties of carbonated concrete units for pavement (PCPs) regarding those one made up by conventional process. To do this, some specimens, produced in an industrial scale, were preliminarily submitted to 12 hours of initial steam cure and 12 hours without initial steam cure, followed by accelerated carbonatation curing for 4 and 16 hours, this occurred in a carbonation chamber set up with 20 % CO2 concentration, 23°C and 65% relative humidity. subsequently, the absorption of CO2 was measured by the Mass Gain Method and checked out by sprinkling the acid-base indicator phenolphthalein; and the mechanical properties were measured at 02 and 28 days, by compressive tests, abrasion resistance test and water absorption test. The results indicated that the Mass Gain Method is feasible to obtain the percentage of the CO2 absorption; all the samples submitted to accelerated carbonation treatment captured CO2, the highest absorption found was 5.1% for the PCPs submitted to 12 hours without initial steam cure with a subsequent 16 hours of carbonation; in addition, the compressive strength gain in the carbonated samples was verified, and at the 02 days this presented better resistance to the axial compression of 40.7 MPa, to the detriment of the reference PCPs (non-carbonated) that presented 37,2 MPa; and at 28 days the best results were again verified for the carbonated PCPs (46.4MPa) in detriment to the reference PCPs (40.7MPa); as for abrasion resistance and water absorption, the carbonated and reference PCPs did not present a significant difference. Therefore, it was concluded that the accelerated carbonation cure procedure in addition to the environmental improvement regarding the CO2 capture, promotes the speed up of the PCP manufacturing, since the carbonated samples presented high compressive strength at early ages.O setor da construção civil se destaca como responsável pela emissão de um terço do total de gases de efeito estufa emitidos pela humanidade. Os processos de extração e fabricação das matérias primas necessárias para a obtenção do concreto emitem grandes quantidades de CO2 ao meio ambiente. Entretanto, diversas pesquisas têm mostrado que materiais à base de cimento Portland possuem a capacidade de armazenar permanentemente CO2 em sua matriz cimentícia sob a forma estável de carbonato de cálcio (CaCO3), através da cura por carbonatação acelerada. Na reação de carbonatação, o gás carbônico (CO2) reage principalmente com o hidróxido de cálcio (Ca(OH)2) e com os silicatos de cálcio hidratados (C – S – H), gerando o CaCO3, que se precipita mineralogicamente como calcita, vaterita e aragonita. A literatura mostra que a precipitação de CaCO3 nos poros do material cimentício altera a porosidade, aumenta a densidade e promove a melhora das propriedades físicas e mecânicas do material, além de contribuir com o meio ambiente ao incorporar definitivamente o CO2. Essa tecnologia tem sido aplicada em componentes de concreto sem reforço de aço, tais como blocos concreto de alvenaria estrutural e não estrutural, telhas, placas, entre outros, havendo pouco estudo relacionado às peças de concreto para pavimentação. Face ao exposto, a presente pesquisa objetivou verificar, analisar e medir a captura de gás carbônico (CO2) em peças de concreto para pavimentação após o processo de cura por carbonatação acelerada; verificar a aplicabilidade do procedimento experimental referente ao Método de Ganho de Massa utilizado para obtenção do valor da absorção de CO2; averiguar se houve melhoria nas propriedades físicas e mecânicas das peças de concreto para pavimentação (PCPs) carbonatadas. Para isso, algumas peças produzidas em escala industrial foram submetidas preliminarmente a 12 horas de cura inicial à vapor e 12 horas sem cura inicial à vapor, com posterior cura por carbonatação acelerada durante 4 e 16 horas; esta ocorreu em câmara de carbonatação configurada com 20% de concentração de CO2, 23°C e 65% de umidade relativa. Posteriormente, a absorção de CO2 foi quantificada pelo Método do Ganho de Massa e verificada através da aspersão do indicador ácido-base fenolftaleína. As propriedades físicas e mecânicas foram aferidas aos 02 e 28 dias, por meio dos ensaios de resistência à compressão axial, resistência à abrasão e absorção de água. Os resultados obtidos indicaram que o Método do Ganho de Massa é viável para a obtenção do percentual de absorção de CO2; todas as mostras submetidas à cura por carbonatação acelerada capturaram CO2, a maior absorção encontrada foi de 5,1% para as PCPs submetidas à 12 horas sem cura inicial à vapor com posterior 16 horas de carbonatação; além disso comprovou-se o ganho de resistência à compressão nas peças carbonatadas, uma vez que estas aos 02 dias apresentaram resistência à compressão axial de 40,7 MPa e 39,7MPa, em detrimento das PCPs referenciais (não carbonatadas) que apresentaram 37,2 MPa, e aos 28 dias os melhores resultados foram verificados novamente para as PCPs carbonatadas (46,4MPa) em detrimento das PCPs referenciais (40,7MPa); quanto à resistência à abrasão e absorção de água, as PCPs carbonatadas e referenciais não apresentaram diferença significativa. Portanto, concluiu-se que o procedimento de cura por carbonatação acelerada além do ganho ambiental relacionado a captura de CO2, pode facilitar a gestão na indústria uma vez que as amostras carbonatadas apresentaram elevada resistência à compressão logo nas primeiras idades.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Civil - PPGECivUFSCarCarbonatação aceleradaCuraAbsorção de CO2Peças de concreto para pavimentaçãoResistênciaConcretoCO2 absorptionAccelerated carbonationConcrete units for pavementCuringStrengthConcreteENGENHARIAS::ENGENHARIA CIVIL::CONSTRUCAO CIVILENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASCaptura de CO2 em peças de concreto para pavimentação através da cura por carbonatação aceleradaCO2 capture in concrete units for pavement through accelerated carbonation cureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600cc830dc1-debc-4e7f-bbc7-a442aa405614info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Versão Final_Lívia Regueira Fortunato Benittez_PPGECIV.pdfDissertação Versão Final_Lívia Regueira Fortunato Benittez_PPGECIV.pdfapplication/pdf9495565https://repositorio.ufscar.br/bitstream/ufscar/11110/1/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final_L%c3%advia%20Regueira%20Fortunato%20Benittez_PPGECIV.pdf674b9ce686dc6ab8c21f44029e8a07d4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11110/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTDissertação Versão Final_Lívia Regueira Fortunato Benittez_PPGECIV.pdf.txtDissertação Versão Final_Lívia Regueira Fortunato Benittez_PPGECIV.pdf.txtExtracted texttext/plain250855https://repositorio.ufscar.br/bitstream/ufscar/11110/4/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final_L%c3%advia%20Regueira%20Fortunato%20Benittez_PPGECIV.pdf.txt5c9fb40a85e4862657cfe169b0f251a5MD54THUMBNAILDissertação Versão Final_Lívia Regueira Fortunato Benittez_PPGECIV.pdf.jpgDissertação Versão Final_Lívia Regueira Fortunato Benittez_PPGECIV.pdf.jpgIM Thumbnailimage/jpeg7681https://repositorio.ufscar.br/bitstream/ufscar/11110/5/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final_L%c3%advia%20Regueira%20Fortunato%20Benittez_PPGECIV.pdf.jpg43846273601ce101180278af79e5938cMD55ufscar/111102023-09-18 18:31:21.028oai:repositorio.ufscar.br:ufscar/11110TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:21Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
dc.title.alternative.eng.fl_str_mv CO2 capture in concrete units for pavement through accelerated carbonation cure
title Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
spellingShingle Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
Benittez, Lívia Regueira Fortunato
Carbonatação acelerada
Cura
Absorção de CO2
Peças de concreto para pavimentação
Resistência
Concreto
CO2 absorption
Accelerated carbonation
Concrete units for pavement
Curing
Strength
Concrete
ENGENHARIAS::ENGENHARIA CIVIL::CONSTRUCAO CIVIL
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
title_short Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
title_full Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
title_fullStr Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
title_full_unstemmed Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
title_sort Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada
author Benittez, Lívia Regueira Fortunato
author_facet Benittez, Lívia Regueira Fortunato
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/7582437787794279
dc.contributor.author.fl_str_mv Benittez, Lívia Regueira Fortunato
dc.contributor.advisor1.fl_str_mv Parsekian, Guilherme Aris
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7798651726059215
dc.contributor.advisor-co1.fl_str_mv Neves Junior, Alex
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8587525595571228
dc.contributor.authorID.fl_str_mv 41169340-893f-460c-a953-c3f675e8a16f
contributor_str_mv Parsekian, Guilherme Aris
Neves Junior, Alex
dc.subject.por.fl_str_mv Carbonatação acelerada
Cura
Absorção de CO2
Peças de concreto para pavimentação
Resistência
Concreto
topic Carbonatação acelerada
Cura
Absorção de CO2
Peças de concreto para pavimentação
Resistência
Concreto
CO2 absorption
Accelerated carbonation
Concrete units for pavement
Curing
Strength
Concrete
ENGENHARIAS::ENGENHARIA CIVIL::CONSTRUCAO CIVIL
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
dc.subject.eng.fl_str_mv CO2 absorption
Accelerated carbonation
Concrete units for pavement
Curing
Strength
Concrete
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA CIVIL::CONSTRUCAO CIVIL
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
description The construction sector stands out as responsible for the emission by third of the total greenhouse gases emitted by mankind. The processes of extraction and manufacture of the raw materials, necessary to obtain the concrete, emit large amounts of CO2 to the environment. However, several researches have shown that Portland cement based materials have the capacity to permanently store CO2 in the cement matrix in the form of stable calcium carbonate (CaCO3), through accelerated carbonation curing. In the carbonation reaction the carbon dioxide (CO2) reacts mainly with the calcium hydroxide (Ca(OH)2) and the hydrated calcium silicates (C - S - H), generating CaCO3, which precipitates mineralogically as calcite, vaterita and aragonite. The literature shows that the precipitation of CaCO3 in the pores of the cementitious material alters the porosity, increases the density and promotes the improvement of the physical and mechanical properties of the material, besides contributing to the environment by definitively incorporating CO2. This technology has been applied in non-reinforced steel components, such as concrete structural and non-structural masonry blocks, tiles, boards, among others; with a lack of studies related to the concrete units for pavement. Aforesaid, the present research aimed to verify, to analyze and to measure the capture of carbon dioxide (CO2) in concrete units for pavement after the accelerated carbonation curing process; to verify the applicability of the experimental procedure related to the Mass Gain Method used to obtain the value of CO2 absorption; if there was an improvement in the physical and mechanical properties of carbonated concrete units for pavement (PCPs) regarding those one made up by conventional process. To do this, some specimens, produced in an industrial scale, were preliminarily submitted to 12 hours of initial steam cure and 12 hours without initial steam cure, followed by accelerated carbonatation curing for 4 and 16 hours, this occurred in a carbonation chamber set up with 20 % CO2 concentration, 23°C and 65% relative humidity. subsequently, the absorption of CO2 was measured by the Mass Gain Method and checked out by sprinkling the acid-base indicator phenolphthalein; and the mechanical properties were measured at 02 and 28 days, by compressive tests, abrasion resistance test and water absorption test. The results indicated that the Mass Gain Method is feasible to obtain the percentage of the CO2 absorption; all the samples submitted to accelerated carbonation treatment captured CO2, the highest absorption found was 5.1% for the PCPs submitted to 12 hours without initial steam cure with a subsequent 16 hours of carbonation; in addition, the compressive strength gain in the carbonated samples was verified, and at the 02 days this presented better resistance to the axial compression of 40.7 MPa, to the detriment of the reference PCPs (non-carbonated) that presented 37,2 MPa; and at 28 days the best results were again verified for the carbonated PCPs (46.4MPa) in detriment to the reference PCPs (40.7MPa); as for abrasion resistance and water absorption, the carbonated and reference PCPs did not present a significant difference. Therefore, it was concluded that the accelerated carbonation cure procedure in addition to the environmental improvement regarding the CO2 capture, promotes the speed up of the PCP manufacturing, since the carbonated samples presented high compressive strength at early ages.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-20T22:18:59Z
dc.date.available.fl_str_mv 2019-03-20T22:18:59Z
dc.date.issued.fl_str_mv 2019-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BENITTEZ, Lívia Regueira Fortunato. Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada. 2019. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11110.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11110
identifier_str_mv BENITTEZ, Lívia Regueira Fortunato. Captura de CO2 em peças de concreto para pavimentação através da cura por carbonatação acelerada. 2019. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11110.
url https://repositorio.ufscar.br/handle/ufscar/11110
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv cc830dc1-debc-4e7f-bbc7-a442aa405614
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Civil - PPGECiv
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11110/1/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final_L%c3%advia%20Regueira%20Fortunato%20Benittez_PPGECIV.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11110/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11110/4/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final_L%c3%advia%20Regueira%20Fortunato%20Benittez_PPGECIV.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11110/5/Disserta%c3%a7%c3%a3o%20Vers%c3%a3o%20Final_L%c3%advia%20Regueira%20Fortunato%20Benittez_PPGECIV.pdf.jpg
bitstream.checksum.fl_str_mv 674b9ce686dc6ab8c21f44029e8a07d4
ae0398b6f8b235e40ad82cba6c50031d
5c9fb40a85e4862657cfe169b0f251a5
43846273601ce101180278af79e5938c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136354034810880