Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050

Detalhes bibliográficos
Autor(a) principal: Vega, Marcelo Clécio Vargas
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/1189
Resumo: It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle &#61542; In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface (&#61543; fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The &#61543; fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing.
id SCAR_a4840f3667a81129c17eafa92cf15ccc
oai_identifier_str oai:repositorio.ufscar.br:ufscar/1189
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Vega, Marcelo Clécio VargasKliauga, Andrea Madeirahttp://lattes.cnpq.br/3527528295399928Rubert, José Benaquehttp://lattes.cnpq.br/1726311467903505Schön, Claudio Geraldohttp://lattes.cnpq.br/2631107236461952http://lattes.cnpq.br/60487041906767327877f173-f4b5-4c5e-9c88-cd03f4bf50ad2016-06-02T19:19:59Z2015-07-022016-06-02T19:19:59Z2014-08-18VEGA, Marcelo Clécio Vargas. The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050. 2014. 132 f. Dissertação (Mestrado em Materiais Funcionais e Polímeros de Fontes Renováveis) - Universidade Federal de São Carlos, Sorocaba, 2014.https://repositorio.ufscar.br/handle/ufscar/1189It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle &#61542; In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface (&#61543; fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The &#61543; fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing.Sabe-se que a estampabilidade em ligas de alumínio AA1050 não é favorecida quando as chapas são produzidas por laminação convencional devido ao surgimento de uma textura do tipo cubo {100}<100> de forte intensidade após tratamentos térmicos de recristalização. O objetivo do trabalho foi investigar se processos com componentes de cisalhamento podem melhorar esta propriedade. Para este trabalho foram selecionados dois processos de deformação plástica que introduzem tensões de cisalhamento: Extrusão em canal angular (ECA) e Laminação assimétrica (LA); esses processos foram comparados à laminação convencional. Na laminação convencional a deformação resulta principalmente de esforços de compressão. No processo ECA o cisalhamento é imposto na intersecção de dois canais de mesma geometria que se interceptam formado um ângulo &#61542;. Na laminação assimétrica o esforço de cisalhamento é introduzido devido à variação de velocidade entre os cilindros de laminação. Partiu-se de chapas de alumínio AA1050 produzidas pelo processo Caster. As deformações foram executadas basicamente em 4 esquemas: i) Laminação convencional com 70% de redução; ii) ECA rota A de 1 a 8 passes; iii) ECA rota A de 1 a 4 passes seguido por laminação convencional com redução de 70% e iv) LA com reduções variando de 30 a 50%. Foi realizada a caracterização mecânica e microestrutural do estado deformado e foi estudada a conformabilidade após tratamento térmico de recozimento. Na deformação por ECA foi observado a redução do tamanho de grão, que medido por EBSD e por microscopia eletrônica de transmissão foi de cerca de 1 &#956;m. A evolução da deformação equivalente comparada com o aumento da dureza indicou uma estabilização do tamanho de grão/célula a partir de 4 passes. Após 8 passes a fração de contornos de alto ângulo ultrapassou a de contornos de baixo ângulo, ou seja, ocorreu recristalização dinâmica durante a deformação. A textura após um passe de ECA se aproximou da textura ideal para matriz ECA de 120°. Mas para deformações com quatro e oito passes, a textura evoluiu para uma dispersão das orientações contendo os {111} paralelos à superfície da chapa (fibra &#61543;), o aparecimento de orientações do tipo cubo rodado (100)<011> e de Goss rodado {110} <110>. A laminação convencional após ECA provocou o retorno às orientações típicas de laminação: latão, cobre e Goss. A deformação por laminação assimétrica com uma diferença de velocidade tangencial de 1,2 impôs esforços de cisalhamento, porém foi necessário diminuir a redução por passes de 10% para 5% para que o cisalhamento adicional modificasse sensivelmente a textura. Comparando a estampabilidade dos materiais deformados, observou-se que a deformação ECA aumentou a profundidade da penetração no ensaio Erichsen, enquanto que a laminação diminuiu o índice Erichsen. A laminação assimétrica reduziu a intensidade de textura e destruiu a simetria das orientações cristalográficas. Esta amostra encruada apresentou estampabilidade superior à das amostras laminadas. Após o recozimento, as amostras de laminação convencional, com ou sem pré-deformação ECA apresentaram texturas típicas de material laminado recozido com alto índice de textura tipo cubo. Nas amostras ECA a fibra &#61543; não ficou estável e teve sua intensidade reduzida. Embora a intensidade de textura total tenha permanecido baixa, o aumento de deformação ECA antes do tratamento térmico reforçou a orientação Goss {110}<001>. Já a amostra de laminação assimétrica houve dispersão das orientações na fibra <100>//ND e tanto orientações cubo como cubo rodado estavam presentes. O menor índice de anisotropia planar foi obtido na amostra de 4 passes ECA recozida (representando uma menor tendência ao orelhamento) e um índice de penetração no ensaio Erichsen da mesma ordem de chapas laminadas convencionalmente. Demostrou-se que tanto a deformação ECA quanto a laminação assimétrica podem modificar significantemente a textura de deformação e de recozimento e melhorar as características de conformabilidade da liga de alumínio 1050. Esta etapa de processamento deve estar localizada no final do processo de conformação mecânica, antes do recozimento final.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência dos Materiais - PPGCM-SoUFSCarBRAlumínio propriedades mecânicascisalhamentodeformações e tensõesalumínio AA1050extrusão em canal angularlaminação assimétricatensões de cisalhamentoaluminum alloy AA1050equal channel angular extrusionasymmetric rollingshear stressOUTROSEstudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-15a0a5ea7-a08f-40ff-b5ad-6295eccae02einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALVEGA_Marcelo_2014.pdfapplication/pdf9141409https://repositorio.ufscar.br/bitstream/ufscar/1189/1/VEGA_Marcelo_2014.pdffd60293925ed2e6a9d8df71ece7c06f5MD51TEXTVEGA_Marcelo_2014.pdf.txtVEGA_Marcelo_2014.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/1189/2/VEGA_Marcelo_2014.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAILVEGA_Marcelo_2014.pdf.jpgVEGA_Marcelo_2014.pdf.jpgIM Thumbnailimage/jpeg6755https://repositorio.ufscar.br/bitstream/ufscar/1189/3/VEGA_Marcelo_2014.pdf.jpg39991bbc7e6a84b8f968aa06200287d5MD53ufscar/11892023-09-18 18:31:28.81oai:repositorio.ufscar.br:ufscar/1189Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
dc.title.alternative.eng.fl_str_mv The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050
title Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
spellingShingle Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
Vega, Marcelo Clécio Vargas
Alumínio propriedades mecânicas
cisalhamento
deformações e tensões
alumínio AA1050
extrusão em canal angular
laminação assimétrica
tensões de cisalhamento
aluminum alloy AA1050
equal channel angular extrusion
asymmetric rolling
shear stress
OUTROS
title_short Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
title_full Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
title_fullStr Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
title_full_unstemmed Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
title_sort Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
author Vega, Marcelo Clécio Vargas
author_facet Vega, Marcelo Clécio Vargas
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6048704190676732
dc.contributor.author.fl_str_mv Vega, Marcelo Clécio Vargas
dc.contributor.advisor1.fl_str_mv Kliauga, Andrea Madeira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3527528295399928
dc.contributor.referee1.fl_str_mv Rubert, José Benaque
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1726311467903505
dc.contributor.referee2.fl_str_mv Schön, Claudio Geraldo
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2631107236461952
dc.contributor.authorID.fl_str_mv 7877f173-f4b5-4c5e-9c88-cd03f4bf50ad
contributor_str_mv Kliauga, Andrea Madeira
Rubert, José Benaque
Schön, Claudio Geraldo
dc.subject.por.fl_str_mv Alumínio propriedades mecânicas
cisalhamento
deformações e tensões
alumínio AA1050
extrusão em canal angular
laminação assimétrica
tensões de cisalhamento
topic Alumínio propriedades mecânicas
cisalhamento
deformações e tensões
alumínio AA1050
extrusão em canal angular
laminação assimétrica
tensões de cisalhamento
aluminum alloy AA1050
equal channel angular extrusion
asymmetric rolling
shear stress
OUTROS
dc.subject.eng.fl_str_mv aluminum alloy AA1050
equal channel angular extrusion
asymmetric rolling
shear stress
dc.subject.cnpq.fl_str_mv OUTROS
description It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle &#61542; In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface (&#61543; fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The &#61543; fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-18
dc.date.available.fl_str_mv 2015-07-02
2016-06-02T19:19:59Z
dc.date.accessioned.fl_str_mv 2016-06-02T19:19:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VEGA, Marcelo Clécio Vargas. The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050. 2014. 132 f. Dissertação (Mestrado em Materiais Funcionais e Polímeros de Fontes Renováveis) - Universidade Federal de São Carlos, Sorocaba, 2014.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/1189
identifier_str_mv VEGA, Marcelo Clécio Vargas. The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050. 2014. 132 f. Dissertação (Mestrado em Materiais Funcionais e Polímeros de Fontes Renováveis) - Universidade Federal de São Carlos, Sorocaba, 2014.
url https://repositorio.ufscar.br/handle/ufscar/1189
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 5a0a5ea7-a08f-40ff-b5ad-6295eccae02e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência dos Materiais - PPGCM-So
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/1189/1/VEGA_Marcelo_2014.pdf
https://repositorio.ufscar.br/bitstream/ufscar/1189/2/VEGA_Marcelo_2014.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/1189/3/VEGA_Marcelo_2014.pdf.jpg
bitstream.checksum.fl_str_mv fd60293925ed2e6a9d8df71ece7c06f5
d41d8cd98f00b204e9800998ecf8427e
39991bbc7e6a84b8f968aa06200287d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715508813365248