Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/1189 |
Resumo: | It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle  In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface ( fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The  fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing. |
id |
SCAR_a4840f3667a81129c17eafa92cf15ccc |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/1189 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Vega, Marcelo Clécio VargasKliauga, Andrea Madeirahttp://lattes.cnpq.br/3527528295399928Rubert, José Benaquehttp://lattes.cnpq.br/1726311467903505Schön, Claudio Geraldohttp://lattes.cnpq.br/2631107236461952http://lattes.cnpq.br/60487041906767327877f173-f4b5-4c5e-9c88-cd03f4bf50ad2016-06-02T19:19:59Z2015-07-022016-06-02T19:19:59Z2014-08-18VEGA, Marcelo Clécio Vargas. The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050. 2014. 132 f. Dissertação (Mestrado em Materiais Funcionais e Polímeros de Fontes Renováveis) - Universidade Federal de São Carlos, Sorocaba, 2014.https://repositorio.ufscar.br/handle/ufscar/1189It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle  In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface ( fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The  fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing.Sabe-se que a estampabilidade em ligas de alumínio AA1050 não é favorecida quando as chapas são produzidas por laminação convencional devido ao surgimento de uma textura do tipo cubo {100}<100> de forte intensidade após tratamentos térmicos de recristalização. O objetivo do trabalho foi investigar se processos com componentes de cisalhamento podem melhorar esta propriedade. Para este trabalho foram selecionados dois processos de deformação plástica que introduzem tensões de cisalhamento: Extrusão em canal angular (ECA) e Laminação assimétrica (LA); esses processos foram comparados à laminação convencional. Na laminação convencional a deformação resulta principalmente de esforços de compressão. No processo ECA o cisalhamento é imposto na intersecção de dois canais de mesma geometria que se interceptam formado um ângulo . Na laminação assimétrica o esforço de cisalhamento é introduzido devido à variação de velocidade entre os cilindros de laminação. Partiu-se de chapas de alumínio AA1050 produzidas pelo processo Caster. As deformações foram executadas basicamente em 4 esquemas: i) Laminação convencional com 70% de redução; ii) ECA rota A de 1 a 8 passes; iii) ECA rota A de 1 a 4 passes seguido por laminação convencional com redução de 70% e iv) LA com reduções variando de 30 a 50%. Foi realizada a caracterização mecânica e microestrutural do estado deformado e foi estudada a conformabilidade após tratamento térmico de recozimento. Na deformação por ECA foi observado a redução do tamanho de grão, que medido por EBSD e por microscopia eletrônica de transmissão foi de cerca de 1 μm. A evolução da deformação equivalente comparada com o aumento da dureza indicou uma estabilização do tamanho de grão/célula a partir de 4 passes. Após 8 passes a fração de contornos de alto ângulo ultrapassou a de contornos de baixo ângulo, ou seja, ocorreu recristalização dinâmica durante a deformação. A textura após um passe de ECA se aproximou da textura ideal para matriz ECA de 120°. Mas para deformações com quatro e oito passes, a textura evoluiu para uma dispersão das orientações contendo os {111} paralelos à superfície da chapa (fibra ), o aparecimento de orientações do tipo cubo rodado (100)<011> e de Goss rodado {110} <110>. A laminação convencional após ECA provocou o retorno às orientações típicas de laminação: latão, cobre e Goss. A deformação por laminação assimétrica com uma diferença de velocidade tangencial de 1,2 impôs esforços de cisalhamento, porém foi necessário diminuir a redução por passes de 10% para 5% para que o cisalhamento adicional modificasse sensivelmente a textura. Comparando a estampabilidade dos materiais deformados, observou-se que a deformação ECA aumentou a profundidade da penetração no ensaio Erichsen, enquanto que a laminação diminuiu o índice Erichsen. A laminação assimétrica reduziu a intensidade de textura e destruiu a simetria das orientações cristalográficas. Esta amostra encruada apresentou estampabilidade superior à das amostras laminadas. Após o recozimento, as amostras de laminação convencional, com ou sem pré-deformação ECA apresentaram texturas típicas de material laminado recozido com alto índice de textura tipo cubo. Nas amostras ECA a fibra  não ficou estável e teve sua intensidade reduzida. Embora a intensidade de textura total tenha permanecido baixa, o aumento de deformação ECA antes do tratamento térmico reforçou a orientação Goss {110}<001>. Já a amostra de laminação assimétrica houve dispersão das orientações na fibra <100>//ND e tanto orientações cubo como cubo rodado estavam presentes. O menor índice de anisotropia planar foi obtido na amostra de 4 passes ECA recozida (representando uma menor tendência ao orelhamento) e um índice de penetração no ensaio Erichsen da mesma ordem de chapas laminadas convencionalmente. Demostrou-se que tanto a deformação ECA quanto a laminação assimétrica podem modificar significantemente a textura de deformação e de recozimento e melhorar as características de conformabilidade da liga de alumínio 1050. Esta etapa de processamento deve estar localizada no final do processo de conformação mecânica, antes do recozimento final.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência dos Materiais - PPGCM-SoUFSCarBRAlumínio propriedades mecânicascisalhamentodeformações e tensõesalumínio AA1050extrusão em canal angularlaminação assimétricatensões de cisalhamentoaluminum alloy AA1050equal channel angular extrusionasymmetric rollingshear stressOUTROSEstudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-15a0a5ea7-a08f-40ff-b5ad-6295eccae02einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALVEGA_Marcelo_2014.pdfapplication/pdf9141409https://repositorio.ufscar.br/bitstream/ufscar/1189/1/VEGA_Marcelo_2014.pdffd60293925ed2e6a9d8df71ece7c06f5MD51TEXTVEGA_Marcelo_2014.pdf.txtVEGA_Marcelo_2014.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/1189/2/VEGA_Marcelo_2014.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAILVEGA_Marcelo_2014.pdf.jpgVEGA_Marcelo_2014.pdf.jpgIM Thumbnailimage/jpeg6755https://repositorio.ufscar.br/bitstream/ufscar/1189/3/VEGA_Marcelo_2014.pdf.jpg39991bbc7e6a84b8f968aa06200287d5MD53ufscar/11892023-09-18 18:31:28.81oai:repositorio.ufscar.br:ufscar/1189Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
dc.title.alternative.eng.fl_str_mv |
The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050 |
title |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
spellingShingle |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 Vega, Marcelo Clécio Vargas Alumínio propriedades mecânicas cisalhamento deformações e tensões alumínio AA1050 extrusão em canal angular laminação assimétrica tensões de cisalhamento aluminum alloy AA1050 equal channel angular extrusion asymmetric rolling shear stress OUTROS |
title_short |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
title_full |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
title_fullStr |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
title_full_unstemmed |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
title_sort |
Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 |
author |
Vega, Marcelo Clécio Vargas |
author_facet |
Vega, Marcelo Clécio Vargas |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6048704190676732 |
dc.contributor.author.fl_str_mv |
Vega, Marcelo Clécio Vargas |
dc.contributor.advisor1.fl_str_mv |
Kliauga, Andrea Madeira |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3527528295399928 |
dc.contributor.referee1.fl_str_mv |
Rubert, José Benaque |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1726311467903505 |
dc.contributor.referee2.fl_str_mv |
Schön, Claudio Geraldo |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2631107236461952 |
dc.contributor.authorID.fl_str_mv |
7877f173-f4b5-4c5e-9c88-cd03f4bf50ad |
contributor_str_mv |
Kliauga, Andrea Madeira Rubert, José Benaque Schön, Claudio Geraldo |
dc.subject.por.fl_str_mv |
Alumínio propriedades mecânicas cisalhamento deformações e tensões alumínio AA1050 extrusão em canal angular laminação assimétrica tensões de cisalhamento |
topic |
Alumínio propriedades mecânicas cisalhamento deformações e tensões alumínio AA1050 extrusão em canal angular laminação assimétrica tensões de cisalhamento aluminum alloy AA1050 equal channel angular extrusion asymmetric rolling shear stress OUTROS |
dc.subject.eng.fl_str_mv |
aluminum alloy AA1050 equal channel angular extrusion asymmetric rolling shear stress |
dc.subject.cnpq.fl_str_mv |
OUTROS |
description |
It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle  In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface ( fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The  fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-08-18 |
dc.date.available.fl_str_mv |
2015-07-02 2016-06-02T19:19:59Z |
dc.date.accessioned.fl_str_mv |
2016-06-02T19:19:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
VEGA, Marcelo Clécio Vargas. The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050. 2014. 132 f. Dissertação (Mestrado em Materiais Funcionais e Polímeros de Fontes Renováveis) - Universidade Federal de São Carlos, Sorocaba, 2014. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/1189 |
identifier_str_mv |
VEGA, Marcelo Clécio Vargas. The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050. 2014. 132 f. Dissertação (Mestrado em Materiais Funcionais e Polímeros de Fontes Renováveis) - Universidade Federal de São Carlos, Sorocaba, 2014. |
url |
https://repositorio.ufscar.br/handle/ufscar/1189 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
5a0a5ea7-a08f-40ff-b5ad-6295eccae02e |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência dos Materiais - PPGCM-So |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/1189/1/VEGA_Marcelo_2014.pdf https://repositorio.ufscar.br/bitstream/ufscar/1189/2/VEGA_Marcelo_2014.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/1189/3/VEGA_Marcelo_2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
fd60293925ed2e6a9d8df71ece7c06f5 d41d8cd98f00b204e9800998ecf8427e 39991bbc7e6a84b8f968aa06200287d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715508813365248 |