Identificação dos snarks fluxo-críticos de ordem pequena

Detalhes bibliográficos
Autor(a) principal: Carneiro, André Breda
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7920
Resumo: The main theme of this dissertation are the k-flow-critical graphs, which are graphs that do not have a k-flow but once any two vertices (either adjacent or not) are identified the smaller graph thus obtained has a k-flow. Amongst those, we focused our study on snarks, which are cubic graphs that do not have a 3-edge-coloring, nor a 4-flow, as Tutte showed that a cubic graph has a 3-edge-coloring if and only if it has a 4-flow. Several famous conjectures can be reduced to snarks, and such fact motivates the study of the structure of such graphs. The 5-Flow Conjecture of Tutte, which states that every 2-edgeconnected graph has a 5-flow is one of them. In 2013, Brinkmann, Goedgebeur, Hägglund and Markström generated all snarks of order at most 36. Silva, Pesci and Lucchesi observed that every 4-flow-critical snark has a 5-flow and that every non-4-flow-critical snark has a 4-flow-critical snark as a minor. This observation allows a new approach to try to resolve Tutte’s 5-Flow Conjecture. This work is an attempt to start following this new approach by identifying which snarks of order at most 36 are 4-flow-critical.
id SCAR_b2951b49698e97681e41a68e69dfb6de
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7920
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Carneiro, André BredaSilva, Cândida Nunes dahttp://lattes.cnpq.br/6019111128413167http://lattes.cnpq.br/6595362919175589e412a719-b021-4104-acc0-5093a20a258b2016-10-19T12:46:57Z2016-10-19T12:46:57Z2016-04-29CARNEIRO, André Breda. Identificação dos snarks fluxo-críticos de ordem pequena. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, Sorocaba, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7920.https://repositorio.ufscar.br/handle/ufscar/7920The main theme of this dissertation are the k-flow-critical graphs, which are graphs that do not have a k-flow but once any two vertices (either adjacent or not) are identified the smaller graph thus obtained has a k-flow. Amongst those, we focused our study on snarks, which are cubic graphs that do not have a 3-edge-coloring, nor a 4-flow, as Tutte showed that a cubic graph has a 3-edge-coloring if and only if it has a 4-flow. Several famous conjectures can be reduced to snarks, and such fact motivates the study of the structure of such graphs. The 5-Flow Conjecture of Tutte, which states that every 2-edgeconnected graph has a 5-flow is one of them. In 2013, Brinkmann, Goedgebeur, Hägglund and Markström generated all snarks of order at most 36. Silva, Pesci and Lucchesi observed that every 4-flow-critical snark has a 5-flow and that every non-4-flow-critical snark has a 4-flow-critical snark as a minor. This observation allows a new approach to try to resolve Tutte’s 5-Flow Conjecture. This work is an attempt to start following this new approach by identifying which snarks of order at most 36 are 4-flow-critical.O tema de pesquisa deste projeto são os grafos k-fluxo-críticos, grafos que não admitem k-fluxo, mas que após a contração de um par de vértices, adjacentes ou não, passam a admitir um k-fluxo. Dentre estes, nos concentraremos no estudo de snarks, que são grafos cúbicos que não admitem 3-coloração de arestas, e tampouco 4-fluxo, dado que Tutte demonstrou que um grafo cúbico admite 3-coloração de arestas se e somente se admite 4-fluxo. Diversas conjecturas famosas podem ser reduzidas a snarks, fato que motiva muito estudo da estrutura de tais grafos. A Conjectura dos 5-Fluxos de Tutte, a qual afirma que todo grafo 2-aresta-conexo admite um 5-fluxo é uma destas. Em 2013, Brinkmann, Goedgebeur, Hägglund e Markström conseguiram gerar computacionalmente todos os snarks com até 36 vértices. Silva, Pesci e Lucchesi observaram que todo snark 4-fluxo-crítico admite 5-fluxo, e que os snarks não 4-fluxo-críticos têm um snark 4-fluxocrítico como minor. Essa observação abre uma nova abordagem na tentativa de resolução da Conjectura dos 5-fluxos de Tutte. Este trabalho é um início de pesquisa segundo essa nova abordagem buscando identificar entre os snarks de até 36 vértices quais são os snarks 4-fluxo-críticos.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus SorocabaPrograma de Pós-Graduação em Ciência da Computação - PPGCC-SoUFSCarTeoria dos grafosSnarkConjectura dos 5-Fluxosk-fluxo-críticoGraph theory5-flow conjecturek-flow-criticalCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAOIdentificação dos snarks fluxo-críticos de ordem pequenaIdentification of flow-critical snarks of small orderinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600ec71de3c-0edf-486d-aa7d-8bb67d716b9ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALCARNEIRO_Andre_2016.pdfCARNEIRO_Andre_2016.pdfapplication/pdf645256https://repositorio.ufscar.br/bitstream/ufscar/7920/1/CARNEIRO_Andre_2016.pdf6bb0b1eafe6943542ba50b6e8987f5dfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7920/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTCARNEIRO_Andre_2016.pdf.txtCARNEIRO_Andre_2016.pdf.txtExtracted texttext/plain126021https://repositorio.ufscar.br/bitstream/ufscar/7920/3/CARNEIRO_Andre_2016.pdf.txt0fe68186c38d14f5516117b5ff8dd0b2MD53THUMBNAILCARNEIRO_Andre_2016.pdf.jpgCARNEIRO_Andre_2016.pdf.jpgIM Thumbnailimage/jpeg5572https://repositorio.ufscar.br/bitstream/ufscar/7920/4/CARNEIRO_Andre_2016.pdf.jpg446645f337ad70b1ea931d71163630bbMD54ufscar/79202023-09-18 18:31:43.452oai:repositorio.ufscar.br:ufscar/7920TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:43Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Identificação dos snarks fluxo-críticos de ordem pequena
dc.title.alternative.eng.fl_str_mv Identification of flow-critical snarks of small order
title Identificação dos snarks fluxo-críticos de ordem pequena
spellingShingle Identificação dos snarks fluxo-críticos de ordem pequena
Carneiro, André Breda
Teoria dos grafos
Snark
Conjectura dos 5-Fluxos
k-fluxo-crítico
Graph theory
5-flow conjecture
k-flow-critical
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO
title_short Identificação dos snarks fluxo-críticos de ordem pequena
title_full Identificação dos snarks fluxo-críticos de ordem pequena
title_fullStr Identificação dos snarks fluxo-críticos de ordem pequena
title_full_unstemmed Identificação dos snarks fluxo-críticos de ordem pequena
title_sort Identificação dos snarks fluxo-críticos de ordem pequena
author Carneiro, André Breda
author_facet Carneiro, André Breda
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6595362919175589
dc.contributor.author.fl_str_mv Carneiro, André Breda
dc.contributor.advisor1.fl_str_mv Silva, Cândida Nunes da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6019111128413167
dc.contributor.authorID.fl_str_mv e412a719-b021-4104-acc0-5093a20a258b
contributor_str_mv Silva, Cândida Nunes da
dc.subject.por.fl_str_mv Teoria dos grafos
Snark
Conjectura dos 5-Fluxos
k-fluxo-crítico
topic Teoria dos grafos
Snark
Conjectura dos 5-Fluxos
k-fluxo-crítico
Graph theory
5-flow conjecture
k-flow-critical
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO
dc.subject.eng.fl_str_mv Graph theory
5-flow conjecture
k-flow-critical
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO
description The main theme of this dissertation are the k-flow-critical graphs, which are graphs that do not have a k-flow but once any two vertices (either adjacent or not) are identified the smaller graph thus obtained has a k-flow. Amongst those, we focused our study on snarks, which are cubic graphs that do not have a 3-edge-coloring, nor a 4-flow, as Tutte showed that a cubic graph has a 3-edge-coloring if and only if it has a 4-flow. Several famous conjectures can be reduced to snarks, and such fact motivates the study of the structure of such graphs. The 5-Flow Conjecture of Tutte, which states that every 2-edgeconnected graph has a 5-flow is one of them. In 2013, Brinkmann, Goedgebeur, Hägglund and Markström generated all snarks of order at most 36. Silva, Pesci and Lucchesi observed that every 4-flow-critical snark has a 5-flow and that every non-4-flow-critical snark has a 4-flow-critical snark as a minor. This observation allows a new approach to try to resolve Tutte’s 5-Flow Conjecture. This work is an attempt to start following this new approach by identifying which snarks of order at most 36 are 4-flow-critical.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-19T12:46:57Z
dc.date.available.fl_str_mv 2016-10-19T12:46:57Z
dc.date.issued.fl_str_mv 2016-04-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARNEIRO, André Breda. Identificação dos snarks fluxo-críticos de ordem pequena. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, Sorocaba, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7920.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7920
identifier_str_mv CARNEIRO, André Breda. Identificação dos snarks fluxo-críticos de ordem pequena. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, Sorocaba, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7920.
url https://repositorio.ufscar.br/handle/ufscar/7920
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv ec71de3c-0edf-486d-aa7d-8bb67d716b9a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC-So
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7920/1/CARNEIRO_Andre_2016.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7920/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7920/3/CARNEIRO_Andre_2016.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7920/4/CARNEIRO_Andre_2016.pdf.jpg
bitstream.checksum.fl_str_mv 6bb0b1eafe6943542ba50b6e8987f5df
ae0398b6f8b235e40ad82cba6c50031d
0fe68186c38d14f5516117b5ff8dd0b2
446645f337ad70b1ea931d71163630bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715569732485120