Subordinação fractal para operadores de Schrödinger unidimensionais

Detalhes bibliográficos
Autor(a) principal: Bazão, Vanderléa Rodrigues
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7737
Resumo: We study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals.
id SCAR_b3125889cb507b0fa4aec8dd4f08cdb3
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7737
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Bazão, Vanderléa RodriguesOliveira, César Rogério dehttp://lattes.cnpq.br/5485204156806697Carvalho, Silas Luiz dehttp://lattes.cnpq.br/1589518857002416http://lattes.cnpq.br/97509084679279269ab823a8-2c78-4ce9-b720-3de56cfb3a992016-10-10T14:48:08Z2016-10-10T14:48:08Z2016-02-16BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737.https://repositorio.ufscar.br/handle/ufscar/7737We study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals.Estudamos as chamadas teorias de subordinação fractal para operadores de Schrödinger unidimensionais. Primeiramente, realizamos um levantamento dos resultados sobre subordinação de Hausdorff para operadores de Schrödinger unidimensionais discretos a fim de analisar as diferenças e semelhanças destes resultados com respeito à medida de empacotamento. Usando-se métodos de subordinação de empacotamento, obtivemos propriedades de continuidade das medidas espectrais de tais operadores com respeito a medidas de empacotamento. Então, aplicamos tais métodos na verificação de que operadores sturmianos com número de rotação de densidade quase limitada possuem espectro puramente α-empacotamento contínuo. Ademais, verificamos que propriedades dimensionais fractais de operadores de Schrodinger discretos, gerados por potenciais sturmianos de densidade limitada e por uma classe de potenciais esparsos, são preservadas sob perturbações adequadas com decaimento polinomial, quando o espectro destes operadores perturbados possuir alguma componente singular contínua. Por fim, realizamos um estudo introdutório sobre subordinação fractal para operadores de Schrödinger unidimensionais contínuos definidos em intervalos limitados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarFísica matemáticaTeoria espectralOperadores de schrodingerSubordinação fractalDimensão HausdorffCIENCIAS EXATAS E DA TERRA::MATEMATICASubordinação fractal para operadores de Schrödinger unidimensionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600bcffdcda-5ce8-4296-ae3a-1650ea990cfdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseVRB.pdfTeseVRB.pdfapplication/pdf1791186https://repositorio.ufscar.br/bitstream/ufscar/7737/1/TeseVRB.pdf970f4dd11b38f69a19ad04406ec5f723MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7737/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseVRB.pdf.txtTeseVRB.pdf.txtExtracted texttext/plain145935https://repositorio.ufscar.br/bitstream/ufscar/7737/3/TeseVRB.pdf.txtb1b1d7c4afb81d025f9f4591631b2d81MD53THUMBNAILTeseVRB.pdf.jpgTeseVRB.pdf.jpgIM Thumbnailimage/jpeg5452https://repositorio.ufscar.br/bitstream/ufscar/7737/4/TeseVRB.pdf.jpg8ea3ca6284b924048798080857785f87MD54ufscar/77372023-09-18 18:30:51.4oai:repositorio.ufscar.br:ufscar/7737TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:51Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Subordinação fractal para operadores de Schrödinger unidimensionais
title Subordinação fractal para operadores de Schrödinger unidimensionais
spellingShingle Subordinação fractal para operadores de Schrödinger unidimensionais
Bazão, Vanderléa Rodrigues
Física matemática
Teoria espectral
Operadores de schrodinger
Subordinação fractal
Dimensão Hausdorff
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Subordinação fractal para operadores de Schrödinger unidimensionais
title_full Subordinação fractal para operadores de Schrödinger unidimensionais
title_fullStr Subordinação fractal para operadores de Schrödinger unidimensionais
title_full_unstemmed Subordinação fractal para operadores de Schrödinger unidimensionais
title_sort Subordinação fractal para operadores de Schrödinger unidimensionais
author Bazão, Vanderléa Rodrigues
author_facet Bazão, Vanderléa Rodrigues
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9750908467927926
dc.contributor.author.fl_str_mv Bazão, Vanderléa Rodrigues
dc.contributor.advisor1.fl_str_mv Oliveira, César Rogério de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5485204156806697
dc.contributor.advisor-co1.fl_str_mv Carvalho, Silas Luiz de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1589518857002416
dc.contributor.authorID.fl_str_mv 9ab823a8-2c78-4ce9-b720-3de56cfb3a99
contributor_str_mv Oliveira, César Rogério de
Carvalho, Silas Luiz de
dc.subject.por.fl_str_mv Física matemática
Teoria espectral
Operadores de schrodinger
Subordinação fractal
Dimensão Hausdorff
topic Física matemática
Teoria espectral
Operadores de schrodinger
Subordinação fractal
Dimensão Hausdorff
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description We study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-10T14:48:08Z
dc.date.available.fl_str_mv 2016-10-10T14:48:08Z
dc.date.issued.fl_str_mv 2016-02-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7737
identifier_str_mv BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737.
url https://repositorio.ufscar.br/handle/ufscar/7737
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv bcffdcda-5ce8-4296-ae3a-1650ea990cfd
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7737/1/TeseVRB.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7737/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7737/3/TeseVRB.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7737/4/TeseVRB.pdf.jpg
bitstream.checksum.fl_str_mv 970f4dd11b38f69a19ad04406ec5f723
ae0398b6f8b235e40ad82cba6c50031d
b1b1d7c4afb81d025f9f4591631b2d81
8ea3ca6284b924048798080857785f87
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715560033157120