Subordinação fractal para operadores de Schrödinger unidimensionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7737 |
Resumo: | We study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals. |
id |
SCAR_b3125889cb507b0fa4aec8dd4f08cdb3 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7737 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Bazão, Vanderléa RodriguesOliveira, César Rogério dehttp://lattes.cnpq.br/5485204156806697Carvalho, Silas Luiz dehttp://lattes.cnpq.br/1589518857002416http://lattes.cnpq.br/97509084679279269ab823a8-2c78-4ce9-b720-3de56cfb3a992016-10-10T14:48:08Z2016-10-10T14:48:08Z2016-02-16BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737.https://repositorio.ufscar.br/handle/ufscar/7737We study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals.Estudamos as chamadas teorias de subordinação fractal para operadores de Schrödinger unidimensionais. Primeiramente, realizamos um levantamento dos resultados sobre subordinação de Hausdorff para operadores de Schrödinger unidimensionais discretos a fim de analisar as diferenças e semelhanças destes resultados com respeito à medida de empacotamento. Usando-se métodos de subordinação de empacotamento, obtivemos propriedades de continuidade das medidas espectrais de tais operadores com respeito a medidas de empacotamento. Então, aplicamos tais métodos na verificação de que operadores sturmianos com número de rotação de densidade quase limitada possuem espectro puramente α-empacotamento contínuo. Ademais, verificamos que propriedades dimensionais fractais de operadores de Schrodinger discretos, gerados por potenciais sturmianos de densidade limitada e por uma classe de potenciais esparsos, são preservadas sob perturbações adequadas com decaimento polinomial, quando o espectro destes operadores perturbados possuir alguma componente singular contínua. Por fim, realizamos um estudo introdutório sobre subordinação fractal para operadores de Schrödinger unidimensionais contínuos definidos em intervalos limitados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarFísica matemáticaTeoria espectralOperadores de schrodingerSubordinação fractalDimensão HausdorffCIENCIAS EXATAS E DA TERRA::MATEMATICASubordinação fractal para operadores de Schrödinger unidimensionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600bcffdcda-5ce8-4296-ae3a-1650ea990cfdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseVRB.pdfTeseVRB.pdfapplication/pdf1791186https://repositorio.ufscar.br/bitstream/ufscar/7737/1/TeseVRB.pdf970f4dd11b38f69a19ad04406ec5f723MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7737/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseVRB.pdf.txtTeseVRB.pdf.txtExtracted texttext/plain145935https://repositorio.ufscar.br/bitstream/ufscar/7737/3/TeseVRB.pdf.txtb1b1d7c4afb81d025f9f4591631b2d81MD53THUMBNAILTeseVRB.pdf.jpgTeseVRB.pdf.jpgIM Thumbnailimage/jpeg5452https://repositorio.ufscar.br/bitstream/ufscar/7737/4/TeseVRB.pdf.jpg8ea3ca6284b924048798080857785f87MD54ufscar/77372023-09-18 18:30:51.4oai:repositorio.ufscar.br:ufscar/7737TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:51Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Subordinação fractal para operadores de Schrödinger unidimensionais |
title |
Subordinação fractal para operadores de Schrödinger unidimensionais |
spellingShingle |
Subordinação fractal para operadores de Schrödinger unidimensionais Bazão, Vanderléa Rodrigues Física matemática Teoria espectral Operadores de schrodinger Subordinação fractal Dimensão Hausdorff CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Subordinação fractal para operadores de Schrödinger unidimensionais |
title_full |
Subordinação fractal para operadores de Schrödinger unidimensionais |
title_fullStr |
Subordinação fractal para operadores de Schrödinger unidimensionais |
title_full_unstemmed |
Subordinação fractal para operadores de Schrödinger unidimensionais |
title_sort |
Subordinação fractal para operadores de Schrödinger unidimensionais |
author |
Bazão, Vanderléa Rodrigues |
author_facet |
Bazão, Vanderléa Rodrigues |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/9750908467927926 |
dc.contributor.author.fl_str_mv |
Bazão, Vanderléa Rodrigues |
dc.contributor.advisor1.fl_str_mv |
Oliveira, César Rogério de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5485204156806697 |
dc.contributor.advisor-co1.fl_str_mv |
Carvalho, Silas Luiz de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/1589518857002416 |
dc.contributor.authorID.fl_str_mv |
9ab823a8-2c78-4ce9-b720-3de56cfb3a99 |
contributor_str_mv |
Oliveira, César Rogério de Carvalho, Silas Luiz de |
dc.subject.por.fl_str_mv |
Física matemática Teoria espectral Operadores de schrodinger Subordinação fractal Dimensão Hausdorff |
topic |
Física matemática Teoria espectral Operadores de schrodinger Subordinação fractal Dimensão Hausdorff CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
We study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-10-10T14:48:08Z |
dc.date.available.fl_str_mv |
2016-10-10T14:48:08Z |
dc.date.issued.fl_str_mv |
2016-02-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7737 |
identifier_str_mv |
BAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737. |
url |
https://repositorio.ufscar.br/handle/ufscar/7737 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
bcffdcda-5ce8-4296-ae3a-1650ea990cfd |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7737/1/TeseVRB.pdf https://repositorio.ufscar.br/bitstream/ufscar/7737/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7737/3/TeseVRB.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7737/4/TeseVRB.pdf.jpg |
bitstream.checksum.fl_str_mv |
970f4dd11b38f69a19ad04406ec5f723 ae0398b6f8b235e40ad82cba6c50031d b1b1d7c4afb81d025f9f4591631b2d81 8ea3ca6284b924048798080857785f87 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715560033157120 |