Defective models for cure rate modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7751 |
Resumo: | Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models. |
id |
SCAR_b3c5c1528918dfa2b40fe98aad55b605 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7751 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Rocha, Ricardo Ferreira daTomazella, Vera Lucia Damascenohttp://lattes.cnpq.br/88705569783170000http://lattes.cnpq.br/0676420269735630bba38e35-6e61-4d3d-81e3-d24c4cd3862b2016-10-10T17:37:59Z2016-10-10T17:37:59Z2016-04-01ROCHA, Ricardo Ferreira da. Defective models for cure rate modeling. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7751.https://repositorio.ufscar.br/handle/ufscar/7751Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models.A modelagem da fração de cura e uma parte importante da an álise de sobrevivência. Essa área estuda os casos em que, supostamente, existem observa ções não suscetíveis ao evento de interesse. Tais casos requerem um tratamento teórico especial, de forma que a modelagem pressuponha a existência de tais observações. E necessário usar alguma estratégia para tornar a função de sobrevivência convergente para um valor p 2 (0; 1), que represente a taxa de cura. Uma forma de modelar tais frações e por meio de distribui ções defeituosas. Essas distribuições são caracterizadas por possuirem funções de densidade de probabilidade que integram em valores inferiores a um quando o domínio de alguns dos seus parâmetros e diferente daquele em que e usualmente definido. Existem, pelo menos, duas distribuições defeituosas na literatura: a Gompertz e a inversa Gaussiana. Os modelos defeituosos têm a vantagem de não precisar pressupor a presença de indivíduos imunes no conjunto de dados. Para utilizar a teoria de d istribuições defeituosas de forma competitiva e necessário uma maior variedade dessas distribuições. Portanto, o principal objetivo deste trabalho e aumentar o n úmero de distribuições defeituosas que podem ser utilizadas na modelagem de frações de curas. Nós investigamos como estender os modelos defeituosos básicos utilizando certas famílias de distribuições. Além disso, derivamos uma propriedade da famí lia Marshall-Olkin de distribuições que permite gerar uma nova classe de modelos defeituosos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Estatística - PPGEsUFSCarCure fractionDefective modelsInverse Gaussian distributionGompertz distributionKumaraswamy familyFração de curaAnálise de sobrevivênciaDistribuição GompertzDistribuição inversa GaussianaModelos de longa duraçãoModelos defeituososCIENCIAS EXATAS E DA TERRADefective models for cure rate modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600ceb2c79a-7b68-4784-a3a7-b6fb90af1437info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseRFR.pdfTeseRFR.pdfapplication/pdf5229141https://repositorio.ufscar.br/bitstream/ufscar/7751/1/TeseRFR.pdf6f0e842f89ed4a41892f27532248ba4aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7751/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseRFR.pdf.txtTeseRFR.pdf.txtExtracted texttext/plain280327https://repositorio.ufscar.br/bitstream/ufscar/7751/3/TeseRFR.pdf.txt5a2cd8277aafe23e3630728c4bd9a9a9MD53THUMBNAILTeseRFR.pdf.jpgTeseRFR.pdf.jpgIM Thumbnailimage/jpeg4507https://repositorio.ufscar.br/bitstream/ufscar/7751/4/TeseRFR.pdf.jpg8ad53ebb08783aad2e7f430a50fa5cd7MD54ufscar/77512023-09-18 18:30:54.247oai:repositorio.ufscar.br:ufscar/7751TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Defective models for cure rate modeling |
title |
Defective models for cure rate modeling |
spellingShingle |
Defective models for cure rate modeling Rocha, Ricardo Ferreira da Cure fraction Defective models Inverse Gaussian distribution Gompertz distribution Kumaraswamy family Fração de cura Análise de sobrevivência Distribuição Gompertz Distribuição inversa Gaussiana Modelos de longa duração Modelos defeituosos CIENCIAS EXATAS E DA TERRA |
title_short |
Defective models for cure rate modeling |
title_full |
Defective models for cure rate modeling |
title_fullStr |
Defective models for cure rate modeling |
title_full_unstemmed |
Defective models for cure rate modeling |
title_sort |
Defective models for cure rate modeling |
author |
Rocha, Ricardo Ferreira da |
author_facet |
Rocha, Ricardo Ferreira da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0676420269735630 |
dc.contributor.author.fl_str_mv |
Rocha, Ricardo Ferreira da |
dc.contributor.advisor1.fl_str_mv |
Tomazella, Vera Lucia Damasceno |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/88705569783170000 |
dc.contributor.authorID.fl_str_mv |
bba38e35-6e61-4d3d-81e3-d24c4cd3862b |
contributor_str_mv |
Tomazella, Vera Lucia Damasceno |
dc.subject.eng.fl_str_mv |
Cure fraction Defective models Inverse Gaussian distribution Gompertz distribution Kumaraswamy family |
topic |
Cure fraction Defective models Inverse Gaussian distribution Gompertz distribution Kumaraswamy family Fração de cura Análise de sobrevivência Distribuição Gompertz Distribuição inversa Gaussiana Modelos de longa duração Modelos defeituosos CIENCIAS EXATAS E DA TERRA |
dc.subject.por.fl_str_mv |
Fração de cura Análise de sobrevivência Distribuição Gompertz Distribuição inversa Gaussiana Modelos de longa duração Modelos defeituosos |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA |
description |
Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-10-10T17:37:59Z |
dc.date.available.fl_str_mv |
2016-10-10T17:37:59Z |
dc.date.issued.fl_str_mv |
2016-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ROCHA, Ricardo Ferreira da. Defective models for cure rate modeling. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7751. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7751 |
identifier_str_mv |
ROCHA, Ricardo Ferreira da. Defective models for cure rate modeling. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7751. |
url |
https://repositorio.ufscar.br/handle/ufscar/7751 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
ceb2c79a-7b68-4784-a3a7-b6fb90af1437 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística - PPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7751/1/TeseRFR.pdf https://repositorio.ufscar.br/bitstream/ufscar/7751/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7751/3/TeseRFR.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7751/4/TeseRFR.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f0e842f89ed4a41892f27532248ba4a ae0398b6f8b235e40ad82cba6c50031d 5a2cd8277aafe23e3630728c4bd9a9a9 8ad53ebb08783aad2e7f430a50fa5cd7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715564472827904 |