Defective models for cure rate modeling

Detalhes bibliográficos
Autor(a) principal: Rocha, Ricardo Ferreira da
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7751
Resumo: Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models.
id SCAR_b3c5c1528918dfa2b40fe98aad55b605
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7751
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Rocha, Ricardo Ferreira daTomazella, Vera Lucia Damascenohttp://lattes.cnpq.br/88705569783170000http://lattes.cnpq.br/0676420269735630bba38e35-6e61-4d3d-81e3-d24c4cd3862b2016-10-10T17:37:59Z2016-10-10T17:37:59Z2016-04-01ROCHA, Ricardo Ferreira da. Defective models for cure rate modeling. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7751.https://repositorio.ufscar.br/handle/ufscar/7751Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models.A modelagem da fração de cura e uma parte importante da an álise de sobrevivência. Essa área estuda os casos em que, supostamente, existem observa ções não suscetíveis ao evento de interesse. Tais casos requerem um tratamento teórico especial, de forma que a modelagem pressuponha a existência de tais observações. E necessário usar alguma estratégia para tornar a função de sobrevivência convergente para um valor p 2 (0; 1), que represente a taxa de cura. Uma forma de modelar tais frações e por meio de distribui ções defeituosas. Essas distribuições são caracterizadas por possuirem funções de densidade de probabilidade que integram em valores inferiores a um quando o domínio de alguns dos seus parâmetros e diferente daquele em que e usualmente definido. Existem, pelo menos, duas distribuições defeituosas na literatura: a Gompertz e a inversa Gaussiana. Os modelos defeituosos têm a vantagem de não precisar pressupor a presença de indivíduos imunes no conjunto de dados. Para utilizar a teoria de d istribuições defeituosas de forma competitiva e necessário uma maior variedade dessas distribuições. Portanto, o principal objetivo deste trabalho e aumentar o n úmero de distribuições defeituosas que podem ser utilizadas na modelagem de frações de curas. Nós investigamos como estender os modelos defeituosos básicos utilizando certas famílias de distribuições. Além disso, derivamos uma propriedade da famí lia Marshall-Olkin de distribuições que permite gerar uma nova classe de modelos defeituosos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Estatística - PPGEsUFSCarCure fractionDefective modelsInverse Gaussian distributionGompertz distributionKumaraswamy familyFração de curaAnálise de sobrevivênciaDistribuição GompertzDistribuição inversa GaussianaModelos de longa duraçãoModelos defeituososCIENCIAS EXATAS E DA TERRADefective models for cure rate modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600ceb2c79a-7b68-4784-a3a7-b6fb90af1437info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseRFR.pdfTeseRFR.pdfapplication/pdf5229141https://repositorio.ufscar.br/bitstream/ufscar/7751/1/TeseRFR.pdf6f0e842f89ed4a41892f27532248ba4aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7751/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseRFR.pdf.txtTeseRFR.pdf.txtExtracted texttext/plain280327https://repositorio.ufscar.br/bitstream/ufscar/7751/3/TeseRFR.pdf.txt5a2cd8277aafe23e3630728c4bd9a9a9MD53THUMBNAILTeseRFR.pdf.jpgTeseRFR.pdf.jpgIM Thumbnailimage/jpeg4507https://repositorio.ufscar.br/bitstream/ufscar/7751/4/TeseRFR.pdf.jpg8ad53ebb08783aad2e7f430a50fa5cd7MD54ufscar/77512023-09-18 18:30:54.247oai:repositorio.ufscar.br:ufscar/7751TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Defective models for cure rate modeling
title Defective models for cure rate modeling
spellingShingle Defective models for cure rate modeling
Rocha, Ricardo Ferreira da
Cure fraction
Defective models
Inverse Gaussian distribution
Gompertz distribution
Kumaraswamy family
Fração de cura
Análise de sobrevivência
Distribuição Gompertz
Distribuição inversa Gaussiana
Modelos de longa duração
Modelos defeituosos
CIENCIAS EXATAS E DA TERRA
title_short Defective models for cure rate modeling
title_full Defective models for cure rate modeling
title_fullStr Defective models for cure rate modeling
title_full_unstemmed Defective models for cure rate modeling
title_sort Defective models for cure rate modeling
author Rocha, Ricardo Ferreira da
author_facet Rocha, Ricardo Ferreira da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0676420269735630
dc.contributor.author.fl_str_mv Rocha, Ricardo Ferreira da
dc.contributor.advisor1.fl_str_mv Tomazella, Vera Lucia Damasceno
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/88705569783170000
dc.contributor.authorID.fl_str_mv bba38e35-6e61-4d3d-81e3-d24c4cd3862b
contributor_str_mv Tomazella, Vera Lucia Damasceno
dc.subject.eng.fl_str_mv Cure fraction
Defective models
Inverse Gaussian distribution
Gompertz distribution
Kumaraswamy family
topic Cure fraction
Defective models
Inverse Gaussian distribution
Gompertz distribution
Kumaraswamy family
Fração de cura
Análise de sobrevivência
Distribuição Gompertz
Distribuição inversa Gaussiana
Modelos de longa duração
Modelos defeituosos
CIENCIAS EXATAS E DA TERRA
dc.subject.por.fl_str_mv Fração de cura
Análise de sobrevivência
Distribuição Gompertz
Distribuição inversa Gaussiana
Modelos de longa duração
Modelos defeituosos
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
description Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-10T17:37:59Z
dc.date.available.fl_str_mv 2016-10-10T17:37:59Z
dc.date.issued.fl_str_mv 2016-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, Ricardo Ferreira da. Defective models for cure rate modeling. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7751.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7751
identifier_str_mv ROCHA, Ricardo Ferreira da. Defective models for cure rate modeling. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7751.
url https://repositorio.ufscar.br/handle/ufscar/7751
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv ceb2c79a-7b68-4784-a3a7-b6fb90af1437
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística - PPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7751/1/TeseRFR.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7751/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7751/3/TeseRFR.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7751/4/TeseRFR.pdf.jpg
bitstream.checksum.fl_str_mv 6f0e842f89ed4a41892f27532248ba4a
ae0398b6f8b235e40ad82cba6c50031d
5a2cd8277aafe23e3630728c4bd9a9a9
8ad53ebb08783aad2e7f430a50fa5cd7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715564472827904