Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development

Detalhes bibliográficos
Autor(a) principal: Juchen, Patricia Trevisani
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/17124
Resumo: Capacitive deionization (CDI) has emerged as a promising electrochemical technology for the desalination of brackish water, which promotes the electrosorption of ions in the electrical double layer. In recent years, there has been significant growth in studies on capacitive deionization, however, challenging issues still persist, such as obtaining low-cost carbon electrodes with high electrosorption capacity and stability over electrosorption/desorption cycles, as well as a better understanding of how the hydrodynamic aspects influence mass transfer and process efficiency. In this sense, the objective of this thesis was to develop an activated carbon electrode using a polymer obtained from residual glycerol from biodiesel as a precursor and to investigate the effects of the architecture of different CDI cells on electrochemical desalination. The results showed that it was possible to prepare electrodes using residual glycerol polymer as the precursor. In electrosorption experiments, the PGAC electrode demonstrated stability over 50 cycles, applying voltages of 1.1 V and 1.2 V, in a symmetrical configuration, desirable behavior to allow the process for long periods of operation. However, when applying 1.4 V, the positive electrode potential exceeded the limit potential of anodic stability, causing oxidation reactions at the anode and, consequently, loss of desalination capacity. The asymmetric and membrane configurations (MCDI) were also analyzed in order to improve the salt adsorption capacity (SAC). Using an asymmetric configuration, it was possible to minimize the deleterious effect of co-ion repulsion, since there was an increase in charge efficiency (QE) from 62.9% to 88.4%. In the MCDI configuration, the application of ion exchange membranes led to a significant increase in the values of SAC and QE. This improvement is attributed to the presence of co-ions repelled from the micropores and which are prevented from migrating into the solution due to the presence of the membrane. These co-ions then accumulate in the macropores of the material, constituting an additional force of attraction of the counter-ions, since electroneutrality must be maintained. These results showed that the PGAC electrode, in addition to being a low-cost material, proved to be promising for brackish water desalination by capacitive deionization. In sequence, the comparison of the different CDI cells showed that the cell architectures influenced the mass transfer and kinetics of the process. For a thinner electrode, the flow-by cell (FBC) showed better desalination performance compared to the flow-through cell (FTC), due to the lower resistance to charging of the electrical double layer and higher diffusion in the micropores. However, for a thicker electrode a notable reduction of SAC occurred in the FBC, a result attributed to the lower mass transfer from the electrode surface to the adsorption active sites. This effect did not occur when using FTC, because in this architecture the convective transport of mass in the interstitial pores promotes a faster kinetics when compared to FBC. Considering these results, a percolation flow cell (PFC) was proposed, to combine the beneficial aspects of previously investigated cell architectures. With the flow of electrolyte percolating through the electrode and being perpendicular to the electric field, the PFC allowed the increase of optimized salt removal (OSR), due to faster mass transfer promoted by the permeation of the electrolyte through the carbon film of the electrode. An investigation of the particle size used in the preparation of the electrode showed that this size directly influences the mass transfer phenomenon, being possible to increase the kinetics constants with smaller particles, but they promoted a lower SAC due to changes in textural properties. These results showed that there is an ideal particle size to obtain a high OSR value. Finally, galvanostatic and quasi-single-pass mode analysis were analyzed using PFC. The results showed that higher flux flow and current density accelerate the kinetics, but quickly reach the cutting potential, affecting the OSR. Therefore, the operating conditions that showed to be more effective to obtain the highest OSR value were 7 ml min-1 and 1 mA cm-2, highlighting the importance of simultaneously analyzing SAC value and cycle time.
id SCAR_b64c97ba6b80c6c962bcd360a7db3019
oai_identifier_str oai:repositorio.ufscar.br:ufscar/17124
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Juchen, Patricia TrevisaniRuotolo, Luís Augusto Martinshttp://lattes.cnpq.br/6167735734348703http://lattes.cnpq.br/2447516579663597662c9c03-a227-4f28-a50e-0e1d8779282f2022-12-06T11:38:43Z2022-12-06T11:38:43Z2022-11-18JUCHEN, Patricia Trevisani. Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17124.https://repositorio.ufscar.br/handle/ufscar/17124Capacitive deionization (CDI) has emerged as a promising electrochemical technology for the desalination of brackish water, which promotes the electrosorption of ions in the electrical double layer. In recent years, there has been significant growth in studies on capacitive deionization, however, challenging issues still persist, such as obtaining low-cost carbon electrodes with high electrosorption capacity and stability over electrosorption/desorption cycles, as well as a better understanding of how the hydrodynamic aspects influence mass transfer and process efficiency. In this sense, the objective of this thesis was to develop an activated carbon electrode using a polymer obtained from residual glycerol from biodiesel as a precursor and to investigate the effects of the architecture of different CDI cells on electrochemical desalination. The results showed that it was possible to prepare electrodes using residual glycerol polymer as the precursor. In electrosorption experiments, the PGAC electrode demonstrated stability over 50 cycles, applying voltages of 1.1 V and 1.2 V, in a symmetrical configuration, desirable behavior to allow the process for long periods of operation. However, when applying 1.4 V, the positive electrode potential exceeded the limit potential of anodic stability, causing oxidation reactions at the anode and, consequently, loss of desalination capacity. The asymmetric and membrane configurations (MCDI) were also analyzed in order to improve the salt adsorption capacity (SAC). Using an asymmetric configuration, it was possible to minimize the deleterious effect of co-ion repulsion, since there was an increase in charge efficiency (QE) from 62.9% to 88.4%. In the MCDI configuration, the application of ion exchange membranes led to a significant increase in the values of SAC and QE. This improvement is attributed to the presence of co-ions repelled from the micropores and which are prevented from migrating into the solution due to the presence of the membrane. These co-ions then accumulate in the macropores of the material, constituting an additional force of attraction of the counter-ions, since electroneutrality must be maintained. These results showed that the PGAC electrode, in addition to being a low-cost material, proved to be promising for brackish water desalination by capacitive deionization. In sequence, the comparison of the different CDI cells showed that the cell architectures influenced the mass transfer and kinetics of the process. For a thinner electrode, the flow-by cell (FBC) showed better desalination performance compared to the flow-through cell (FTC), due to the lower resistance to charging of the electrical double layer and higher diffusion in the micropores. However, for a thicker electrode a notable reduction of SAC occurred in the FBC, a result attributed to the lower mass transfer from the electrode surface to the adsorption active sites. This effect did not occur when using FTC, because in this architecture the convective transport of mass in the interstitial pores promotes a faster kinetics when compared to FBC. Considering these results, a percolation flow cell (PFC) was proposed, to combine the beneficial aspects of previously investigated cell architectures. With the flow of electrolyte percolating through the electrode and being perpendicular to the electric field, the PFC allowed the increase of optimized salt removal (OSR), due to faster mass transfer promoted by the permeation of the electrolyte through the carbon film of the electrode. An investigation of the particle size used in the preparation of the electrode showed that this size directly influences the mass transfer phenomenon, being possible to increase the kinetics constants with smaller particles, but they promoted a lower SAC due to changes in textural properties. These results showed that there is an ideal particle size to obtain a high OSR value. Finally, galvanostatic and quasi-single-pass mode analysis were analyzed using PFC. The results showed that higher flux flow and current density accelerate the kinetics, but quickly reach the cutting potential, affecting the OSR. Therefore, the operating conditions that showed to be more effective to obtain the highest OSR value were 7 ml min-1 and 1 mA cm-2, highlighting the importance of simultaneously analyzing SAC value and cycle time.A deionização capacitiva (DIC) surgiu como uma tecnologia eletroquímica promissora para a dessalinização de água salobra, a qual promove a eletrossorção de íons na dupla camada elétrica. Nos últimos anos, houve um crescimento significativo dos estudos sobre deionização capacitiva, porém, questões desafiadoras ainda persistem, como a obtenção de eletrodos de carbono de baixo custo, com alta capacidade de eletrossorção e estabilidade ao longo dos ciclos de eletrossorção/dessorção, assim como um melhor entendimento como os aspectos hidrodinâmicos que influenciam a transferência de massa e a eficácia do processo. Neste sentido, o objetivo desta tese foi desenvolver um eletrodo de carvão ativado utilizando como precursor um polímero obtido a partir do glicerol residual do biodiesel e investigar os efeitos da arquitetura de diferentes células DIC na dessalinização eletroquímica. Os resultados mostraram que foi possível preparar eletrodos empregando como precursor o polímero de glicerol residual. Nos experimentos de eletrossorção, o eletrodo PGAC demonstrou estabilidade ao longo de 50 ciclos, aplicando-se voltagens de 1,1 V e 1,2 V, na configuração simétrica, comportamento desejável para permitir o processo por longos períodos de operação. No entanto, ao se aplicar 1,4 V, o potencial do eletrodo positivo ultrapassou o potencial limite de estabilidade anódica, ocasionando reações de oxidação no ânodo e, consequentemente, perda da capacidade de dessalinização. As configurações assimétrica e com membrana (MCDI) foram também analisadas com o intuito de melhorar a capacidade de adsorção de sal (salt adsorption capacity - SAC). Utilizando-se configuração assimétrica foi possível minimizar o efeito deletério da expulsão de co-íons, visto que houve um aumento de eficiência de carga (QE) de 62,9% para 88,4%. Já na configuração MCDI, a aplicação de membranas de troca iônica levou a um aumento significativo dos valores de SAC e QE. Essa melhoria é atribuída à presença dos co-íons repelidos dos microporos e que são impedidos de migrar para a solução devido à presença da membrana. Esses co-íons acumulam-se então nos macroporos do material, constituindo-se em uma força de atração adicional dos contra-íons, uma vez que a eletroneutralidade deve ser mantida. Esses resultados mostraram que o eletrodo PGAC, além de ser um material de baixo custo, revelou-se promissor para dessalinização de água salobra por deionização capacitiva. Na sequência, a comparação de diferentes células de DIC evidenciou que suas arquiteturas influenciaram na transferência de massa e cinética do processo. Para um eletrodo de menorespessura, a célula flow-by (CFB) apresentou melhor performance de dessalinização comparada à célula flow-through (CFT), devido à menor resistência ao carregamento da dupla camada elétrica e maior difusão nos microporos. Porém, para um eletrodo mais espesso, uma notável redução de SAC ocorreu na CFB, resultado atribuído à menor transferência de massa da superfície do eletrodo até os sítios ativos de adsorção. Este efeito não ocorreu ao se usar a CFT, pois nesta arquitetura o transporte convectivo de massa nos poros intersticiais promoveu uma cinética mais rápida quando comparada à CFB. Considerando esses resultados, uma célula de fluxo com percolação (CFP) foi proposta para combinar os aspectos benéficos das arquiteturas de célula investigadas anteriormente. Com o fluxo do eletrólito percolando o eletrodo e sendo perpendicular ao campo elétrico, a CFP permitiu aumentar o parâmetro “optimized salt removal” (OSR), devido à transferência de massa mais rápida promovida pela permeação do eletrólito através do filme de carbono do eletrodo. Uma investigação do tamanho de partícula utilizado na elaboração do eletrodo mostrou que esse tamanho influencia diretamente no fenômeno de transferência de massa, sendo possível aumentar as constantes cinéticas com partículas menores, porém as mesmas promoveram um SAC menor devido a alterações nas propriedades texturais. Esses resultados evidenciaram que existe um tamanho de partícula ideal para obter um valor elevado de OSR. Por fim, a análise do modo galvanostático e quase single-pass foram analisadas utilizando a CFP. Os resultados mostraram que a vazão e a densidade de corrente mais elevadas aceleram a cinética, mas atingem rapidamente o potencial de corte, afetando o OSR. Logo as condições operacionais que mostraram serem mais efetivas para obter o maior valor de OSR foram 7 ml min-1 e 1 mA cm-2, evidenciando a importância de analisar simultaneamente o SAC e o tempo de ciclo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Finance Code 001Grant numbers 2020/12706-9engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDesalinationCapacitive deionizationPolyglycerol activated carbonCrude glycerolElectrode stabilityPotential of zero chargeCell architectureMass transferDessalinizaçãoDeionização capacitivaCarvão ativado de poliglicerolGlicerol residualEstabilidade do eletrodoPotencial de carga zeroArquitetura da célulaTransferência de massaENGENHARIAS::ENGENHARIA QUIMICAElectrochemical desalination using polyglycerol activated carbon: electrode, cell, and process developmentDessalinização eletroquímica usando carvão ativado de poliglicerol: desenvolvimento do eletrodo, célula e processoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600cf9213f8-9cfd-427b-96e9-08a34508a5b6reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese de Doutorado Patricia Trevisani Juchen.pdfTese de Doutorado Patricia Trevisani Juchen.pdfTese de Doutorado Patricia Trevisani Juchenapplication/pdf2827396https://repositorio.ufscar.br/bitstream/ufscar/17124/1/Tese%20de%20Doutorado%20Patricia%20Trevisani%20Juchen.pdf3f781d7c208bc09806ce267a0d648b75MD51Carta Comprovante_Versao Final_.pdfCarta Comprovante_Versao Final_.pdfCarta Comprovante de Versão Finalapplication/pdf261098https://repositorio.ufscar.br/bitstream/ufscar/17124/2/Carta%20Comprovante_Versao%20Final_.pdf78b2f9720a76a4d71c14a64e4912f3fdMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/17124/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTTese de Doutorado Patricia Trevisani Juchen.pdf.txtTese de Doutorado Patricia Trevisani Juchen.pdf.txtExtracted texttext/plain229505https://repositorio.ufscar.br/bitstream/ufscar/17124/4/Tese%20de%20Doutorado%20Patricia%20Trevisani%20Juchen.pdf.txt13b1cce69e1316e0084f0309f7b9d7dbMD54Carta Comprovante_Versao Final_.pdf.txtCarta Comprovante_Versao Final_.pdf.txtExtracted texttext/plain1464https://repositorio.ufscar.br/bitstream/ufscar/17124/6/Carta%20Comprovante_Versao%20Final_.pdf.txte5e4efe6697d0266926c726a32c3d29eMD56THUMBNAILTese de Doutorado Patricia Trevisani Juchen.pdf.jpgTese de Doutorado Patricia Trevisani Juchen.pdf.jpgIM Thumbnailimage/jpeg6765https://repositorio.ufscar.br/bitstream/ufscar/17124/5/Tese%20de%20Doutorado%20Patricia%20Trevisani%20Juchen.pdf.jpg9c9ba6080d880be639cb32e6efe616d3MD55Carta Comprovante_Versao Final_.pdf.jpgCarta Comprovante_Versao Final_.pdf.jpgIM Thumbnailimage/jpeg11653https://repositorio.ufscar.br/bitstream/ufscar/17124/7/Carta%20Comprovante_Versao%20Final_.pdf.jpgbba523edb50998bd80ec1bfa6c8e3583MD57ufscar/171242023-09-18 18:32:32.559oai:repositorio.ufscar.br:ufscar/17124Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:32Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
dc.title.alternative.por.fl_str_mv Dessalinização eletroquímica usando carvão ativado de poliglicerol: desenvolvimento do eletrodo, célula e processo
title Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
spellingShingle Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
Juchen, Patricia Trevisani
Desalination
Capacitive deionization
Polyglycerol activated carbon
Crude glycerol
Electrode stability
Potential of zero charge
Cell architecture
Mass transfer
Dessalinização
Deionização capacitiva
Carvão ativado de poliglicerol
Glicerol residual
Estabilidade do eletrodo
Potencial de carga zero
Arquitetura da célula
Transferência de massa
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
title_full Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
title_fullStr Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
title_full_unstemmed Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
title_sort Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development
author Juchen, Patricia Trevisani
author_facet Juchen, Patricia Trevisani
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2447516579663597
dc.contributor.author.fl_str_mv Juchen, Patricia Trevisani
dc.contributor.advisor1.fl_str_mv Ruotolo, Luís Augusto Martins
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6167735734348703
dc.contributor.authorID.fl_str_mv 662c9c03-a227-4f28-a50e-0e1d8779282f
contributor_str_mv Ruotolo, Luís Augusto Martins
dc.subject.eng.fl_str_mv Desalination
Capacitive deionization
Polyglycerol activated carbon
Crude glycerol
Electrode stability
Potential of zero charge
Cell architecture
Mass transfer
topic Desalination
Capacitive deionization
Polyglycerol activated carbon
Crude glycerol
Electrode stability
Potential of zero charge
Cell architecture
Mass transfer
Dessalinização
Deionização capacitiva
Carvão ativado de poliglicerol
Glicerol residual
Estabilidade do eletrodo
Potencial de carga zero
Arquitetura da célula
Transferência de massa
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.por.fl_str_mv Dessalinização
Deionização capacitiva
Carvão ativado de poliglicerol
Glicerol residual
Estabilidade do eletrodo
Potencial de carga zero
Arquitetura da célula
Transferência de massa
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Capacitive deionization (CDI) has emerged as a promising electrochemical technology for the desalination of brackish water, which promotes the electrosorption of ions in the electrical double layer. In recent years, there has been significant growth in studies on capacitive deionization, however, challenging issues still persist, such as obtaining low-cost carbon electrodes with high electrosorption capacity and stability over electrosorption/desorption cycles, as well as a better understanding of how the hydrodynamic aspects influence mass transfer and process efficiency. In this sense, the objective of this thesis was to develop an activated carbon electrode using a polymer obtained from residual glycerol from biodiesel as a precursor and to investigate the effects of the architecture of different CDI cells on electrochemical desalination. The results showed that it was possible to prepare electrodes using residual glycerol polymer as the precursor. In electrosorption experiments, the PGAC electrode demonstrated stability over 50 cycles, applying voltages of 1.1 V and 1.2 V, in a symmetrical configuration, desirable behavior to allow the process for long periods of operation. However, when applying 1.4 V, the positive electrode potential exceeded the limit potential of anodic stability, causing oxidation reactions at the anode and, consequently, loss of desalination capacity. The asymmetric and membrane configurations (MCDI) were also analyzed in order to improve the salt adsorption capacity (SAC). Using an asymmetric configuration, it was possible to minimize the deleterious effect of co-ion repulsion, since there was an increase in charge efficiency (QE) from 62.9% to 88.4%. In the MCDI configuration, the application of ion exchange membranes led to a significant increase in the values of SAC and QE. This improvement is attributed to the presence of co-ions repelled from the micropores and which are prevented from migrating into the solution due to the presence of the membrane. These co-ions then accumulate in the macropores of the material, constituting an additional force of attraction of the counter-ions, since electroneutrality must be maintained. These results showed that the PGAC electrode, in addition to being a low-cost material, proved to be promising for brackish water desalination by capacitive deionization. In sequence, the comparison of the different CDI cells showed that the cell architectures influenced the mass transfer and kinetics of the process. For a thinner electrode, the flow-by cell (FBC) showed better desalination performance compared to the flow-through cell (FTC), due to the lower resistance to charging of the electrical double layer and higher diffusion in the micropores. However, for a thicker electrode a notable reduction of SAC occurred in the FBC, a result attributed to the lower mass transfer from the electrode surface to the adsorption active sites. This effect did not occur when using FTC, because in this architecture the convective transport of mass in the interstitial pores promotes a faster kinetics when compared to FBC. Considering these results, a percolation flow cell (PFC) was proposed, to combine the beneficial aspects of previously investigated cell architectures. With the flow of electrolyte percolating through the electrode and being perpendicular to the electric field, the PFC allowed the increase of optimized salt removal (OSR), due to faster mass transfer promoted by the permeation of the electrolyte through the carbon film of the electrode. An investigation of the particle size used in the preparation of the electrode showed that this size directly influences the mass transfer phenomenon, being possible to increase the kinetics constants with smaller particles, but they promoted a lower SAC due to changes in textural properties. These results showed that there is an ideal particle size to obtain a high OSR value. Finally, galvanostatic and quasi-single-pass mode analysis were analyzed using PFC. The results showed that higher flux flow and current density accelerate the kinetics, but quickly reach the cutting potential, affecting the OSR. Therefore, the operating conditions that showed to be more effective to obtain the highest OSR value were 7 ml min-1 and 1 mA cm-2, highlighting the importance of simultaneously analyzing SAC value and cycle time.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-06T11:38:43Z
dc.date.available.fl_str_mv 2022-12-06T11:38:43Z
dc.date.issued.fl_str_mv 2022-11-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JUCHEN, Patricia Trevisani. Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17124.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/17124
identifier_str_mv JUCHEN, Patricia Trevisani. Electrochemical desalination using polyglycerol activated carbon: electrode, cell, and process development. 2022. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17124.
url https://repositorio.ufscar.br/handle/ufscar/17124
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv cf9213f8-9cfd-427b-96e9-08a34508a5b6
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/17124/1/Tese%20de%20Doutorado%20Patricia%20Trevisani%20Juchen.pdf
https://repositorio.ufscar.br/bitstream/ufscar/17124/2/Carta%20Comprovante_Versao%20Final_.pdf
https://repositorio.ufscar.br/bitstream/ufscar/17124/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/17124/4/Tese%20de%20Doutorado%20Patricia%20Trevisani%20Juchen.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/17124/6/Carta%20Comprovante_Versao%20Final_.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/17124/5/Tese%20de%20Doutorado%20Patricia%20Trevisani%20Juchen.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/17124/7/Carta%20Comprovante_Versao%20Final_.pdf.jpg
bitstream.checksum.fl_str_mv 3f781d7c208bc09806ce267a0d648b75
78b2f9720a76a4d71c14a64e4912f3fd
e39d27027a6cc9cb039ad269a5db8e34
13b1cce69e1316e0084f0309f7b9d7db
e5e4efe6697d0266926c726a32c3d29e
9c9ba6080d880be639cb32e6efe616d3
bba523edb50998bd80ec1bfa6c8e3583
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136415268503552