Bayesian and classical inference for the generalized gamma distribution and related models

Detalhes bibliográficos
Autor(a) principal: Ramos, Pedro Luiz
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9962
Resumo: The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented.
id SCAR_b8a63778fbaa834067377278f288b20c
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9962
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Ramos, Pedro LuizLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/76425275932635179e317b1b-964a-4a7b-9e13-bd7ce9131efc2018-05-10T18:45:09Z2018-05-10T18:45:09Z2018-02-22RAMOS, Pedro Luiz. Bayesian and classical inference for the generalized gamma distribution and related models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9962.https://repositorio.ufscar.br/handle/ufscar/9962The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented.A distribuição gama Generalizada (GG) possui um papel fundamental para modelar dados em diversas áreas. Tal distribuição possui como casos particulares importantes distribuições, tais como, Weibull, Gama, lognormal, Nakagami-m, dentre outras. Nesta tese, tem-se como objetivo principal, considerando as abordagens clássica e Bayesiana, desenvolver diferentes procedimentos de estimação para os parâmetros da distribuição gama generalizada e de alguns dos seus casos particulares dentre eles as distribuições Nakagami-m e Gama. Do ponto de vista Bayesiano, iremos propor de forma simples, condições suficientes e necessárias para verificar se diferentes distribuições a priori não-informativas impróprias conduzem a distribuições posteriori próprias. Tais resultados são apresentados para as distribuições Nakagami-m, gama e gama generalizada. Assim, com a criação de novas prioris não-informativas, para tais modelos, futuros pesquisadores poderão utilizar nossos resultados para verificar se as distribuições a posteriori obtidas são impróprias ou não. Aplicações dos teoremas propostos são apresentados em diferentes prioris objetivas, tais como, a regra de Jeffreys, priori Jeffreys, priori maximal data information e prioris de referência. Iremos também realizar estudos de simulação para investigar a influência destas prioris nas estimativas a posteriori. Além disso, são propostos estimadores de máxima a posteriori em forma fechada para as distribuições Nakagami-m e Gama. Por meio de estudos de simulação verificamos que tais estimadores superam os procedimentos de estimação existentes e produzem estimativas quase não-viciadas para os parâmetros de interesse. Por fim, apresentamos uma nova distribuição obtida considerando um modelo de mistura de distribuições gama generalizada.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarDistribuição gama generalizadaDistribuição Nakagami-mDistribuição gamaMétodos bayesianosCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICABayesian and classical inference for the generalized gamma distribution and related modelsAnálise clássica e Bayesiana para a distribuição gama generalizada e modelos relacionadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600d0f3b31a-38c4-4c28-aa5b-837ad377108einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL02 - Tese UFSCar.pdf02 - Tese UFSCar.pdfTese de Doutoradoapplication/pdf1575876https://repositorio.ufscar.br/bitstream/ufscar/9962/3/02%20-%20Tese%20UFSCar.pdff5f6879056a5c15fc248608a2b258e8aMD5303 - Autorizacao Orientador.pdf03 - Autorizacao Orientador.pdfAutorização do Orientadorapplication/pdf95848https://repositorio.ufscar.br/bitstream/ufscar/9962/4/03%20-%20Autorizacao%20Orientador.pdf66d7cf00f533538580160d456623e1caMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9962/5/license.txtae0398b6f8b235e40ad82cba6c50031dMD55TEXT02 - Tese UFSCar.pdf.txt02 - Tese UFSCar.pdf.txtExtracted texttext/plain257479https://repositorio.ufscar.br/bitstream/ufscar/9962/6/02%20-%20Tese%20UFSCar.pdf.txt4d3cebfc51ad99307b217078e330954fMD5603 - Autorizacao Orientador.pdf.txt03 - Autorizacao Orientador.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/9962/7/03%20-%20Autorizacao%20Orientador.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD57THUMBNAIL02 - Tese UFSCar.pdf.jpg02 - Tese UFSCar.pdf.jpgIM Thumbnailimage/jpeg7645https://repositorio.ufscar.br/bitstream/ufscar/9962/8/02%20-%20Tese%20UFSCar.pdf.jpgcebbf0ad4429e0e5e9a0b9304b32c560MD5803 - Autorizacao Orientador.pdf.jpg03 - Autorizacao Orientador.pdf.jpgIM Thumbnailimage/jpeg8214https://repositorio.ufscar.br/bitstream/ufscar/9962/9/03%20-%20Autorizacao%20Orientador.pdf.jpga595f81fa0f5ebf327c470a6f1dc95c9MD59ufscar/99622023-09-18 18:31:41.66oai:repositorio.ufscar.br:ufscar/9962TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:41Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Bayesian and classical inference for the generalized gamma distribution and related models
dc.title.alternative.por.fl_str_mv Análise clássica e Bayesiana para a distribuição gama generalizada e modelos relacionados
title Bayesian and classical inference for the generalized gamma distribution and related models
spellingShingle Bayesian and classical inference for the generalized gamma distribution and related models
Ramos, Pedro Luiz
Distribuição gama generalizada
Distribuição Nakagami-m
Distribuição gama
Métodos bayesianos
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA
title_short Bayesian and classical inference for the generalized gamma distribution and related models
title_full Bayesian and classical inference for the generalized gamma distribution and related models
title_fullStr Bayesian and classical inference for the generalized gamma distribution and related models
title_full_unstemmed Bayesian and classical inference for the generalized gamma distribution and related models
title_sort Bayesian and classical inference for the generalized gamma distribution and related models
author Ramos, Pedro Luiz
author_facet Ramos, Pedro Luiz
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/7642527593263517
dc.contributor.author.fl_str_mv Ramos, Pedro Luiz
dc.contributor.advisor1.fl_str_mv Louzada Neto, Francisco
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
dc.contributor.authorID.fl_str_mv 9e317b1b-964a-4a7b-9e13-bd7ce9131efc
contributor_str_mv Louzada Neto, Francisco
dc.subject.por.fl_str_mv Distribuição gama generalizada
Distribuição Nakagami-m
Distribuição gama
Métodos bayesianos
topic Distribuição gama generalizada
Distribuição Nakagami-m
Distribuição gama
Métodos bayesianos
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA
description The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-05-10T18:45:09Z
dc.date.available.fl_str_mv 2018-05-10T18:45:09Z
dc.date.issued.fl_str_mv 2018-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RAMOS, Pedro Luiz. Bayesian and classical inference for the generalized gamma distribution and related models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9962.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9962
identifier_str_mv RAMOS, Pedro Luiz. Bayesian and classical inference for the generalized gamma distribution and related models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9962.
url https://repositorio.ufscar.br/handle/ufscar/9962
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv d0f3b31a-38c4-4c28-aa5b-837ad377108e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9962/3/02%20-%20Tese%20UFSCar.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9962/4/03%20-%20Autorizacao%20Orientador.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9962/5/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9962/6/02%20-%20Tese%20UFSCar.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9962/7/03%20-%20Autorizacao%20Orientador.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9962/8/02%20-%20Tese%20UFSCar.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/9962/9/03%20-%20Autorizacao%20Orientador.pdf.jpg
bitstream.checksum.fl_str_mv f5f6879056a5c15fc248608a2b258e8a
66d7cf00f533538580160d456623e1ca
ae0398b6f8b235e40ad82cba6c50031d
4d3cebfc51ad99307b217078e330954f
68b329da9893e34099c7d8ad5cb9c940
cebbf0ad4429e0e5e9a0b9304b32c560
a595f81fa0f5ebf327c470a6f1dc95c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715587028746240