Bayesian and classical inference for the generalized gamma distribution and related models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/9962 |
Resumo: | The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented. |
id |
SCAR_b8a63778fbaa834067377278f288b20c |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/9962 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Ramos, Pedro LuizLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/76425275932635179e317b1b-964a-4a7b-9e13-bd7ce9131efc2018-05-10T18:45:09Z2018-05-10T18:45:09Z2018-02-22RAMOS, Pedro Luiz. Bayesian and classical inference for the generalized gamma distribution and related models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9962.https://repositorio.ufscar.br/handle/ufscar/9962The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented.A distribuição gama Generalizada (GG) possui um papel fundamental para modelar dados em diversas áreas. Tal distribuição possui como casos particulares importantes distribuições, tais como, Weibull, Gama, lognormal, Nakagami-m, dentre outras. Nesta tese, tem-se como objetivo principal, considerando as abordagens clássica e Bayesiana, desenvolver diferentes procedimentos de estimação para os parâmetros da distribuição gama generalizada e de alguns dos seus casos particulares dentre eles as distribuições Nakagami-m e Gama. Do ponto de vista Bayesiano, iremos propor de forma simples, condições suficientes e necessárias para verificar se diferentes distribuições a priori não-informativas impróprias conduzem a distribuições posteriori próprias. Tais resultados são apresentados para as distribuições Nakagami-m, gama e gama generalizada. Assim, com a criação de novas prioris não-informativas, para tais modelos, futuros pesquisadores poderão utilizar nossos resultados para verificar se as distribuições a posteriori obtidas são impróprias ou não. Aplicações dos teoremas propostos são apresentados em diferentes prioris objetivas, tais como, a regra de Jeffreys, priori Jeffreys, priori maximal data information e prioris de referência. Iremos também realizar estudos de simulação para investigar a influência destas prioris nas estimativas a posteriori. Além disso, são propostos estimadores de máxima a posteriori em forma fechada para as distribuições Nakagami-m e Gama. Por meio de estudos de simulação verificamos que tais estimadores superam os procedimentos de estimação existentes e produzem estimativas quase não-viciadas para os parâmetros de interesse. Por fim, apresentamos uma nova distribuição obtida considerando um modelo de mistura de distribuições gama generalizada.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarDistribuição gama generalizadaDistribuição Nakagami-mDistribuição gamaMétodos bayesianosCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICABayesian and classical inference for the generalized gamma distribution and related modelsAnálise clássica e Bayesiana para a distribuição gama generalizada e modelos relacionadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600d0f3b31a-38c4-4c28-aa5b-837ad377108einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL02 - Tese UFSCar.pdf02 - Tese UFSCar.pdfTese de Doutoradoapplication/pdf1575876https://repositorio.ufscar.br/bitstream/ufscar/9962/3/02%20-%20Tese%20UFSCar.pdff5f6879056a5c15fc248608a2b258e8aMD5303 - Autorizacao Orientador.pdf03 - Autorizacao Orientador.pdfAutorização do Orientadorapplication/pdf95848https://repositorio.ufscar.br/bitstream/ufscar/9962/4/03%20-%20Autorizacao%20Orientador.pdf66d7cf00f533538580160d456623e1caMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9962/5/license.txtae0398b6f8b235e40ad82cba6c50031dMD55TEXT02 - Tese UFSCar.pdf.txt02 - Tese UFSCar.pdf.txtExtracted texttext/plain257479https://repositorio.ufscar.br/bitstream/ufscar/9962/6/02%20-%20Tese%20UFSCar.pdf.txt4d3cebfc51ad99307b217078e330954fMD5603 - Autorizacao Orientador.pdf.txt03 - Autorizacao Orientador.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/9962/7/03%20-%20Autorizacao%20Orientador.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD57THUMBNAIL02 - Tese UFSCar.pdf.jpg02 - Tese UFSCar.pdf.jpgIM Thumbnailimage/jpeg7645https://repositorio.ufscar.br/bitstream/ufscar/9962/8/02%20-%20Tese%20UFSCar.pdf.jpgcebbf0ad4429e0e5e9a0b9304b32c560MD5803 - Autorizacao Orientador.pdf.jpg03 - Autorizacao Orientador.pdf.jpgIM Thumbnailimage/jpeg8214https://repositorio.ufscar.br/bitstream/ufscar/9962/9/03%20-%20Autorizacao%20Orientador.pdf.jpga595f81fa0f5ebf327c470a6f1dc95c9MD59ufscar/99622023-09-18 18:31:41.66oai:repositorio.ufscar.br:ufscar/9962TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:41Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Bayesian and classical inference for the generalized gamma distribution and related models |
dc.title.alternative.por.fl_str_mv |
Análise clássica e Bayesiana para a distribuição gama generalizada e modelos relacionados |
title |
Bayesian and classical inference for the generalized gamma distribution and related models |
spellingShingle |
Bayesian and classical inference for the generalized gamma distribution and related models Ramos, Pedro Luiz Distribuição gama generalizada Distribuição Nakagami-m Distribuição gama Métodos bayesianos CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA |
title_short |
Bayesian and classical inference for the generalized gamma distribution and related models |
title_full |
Bayesian and classical inference for the generalized gamma distribution and related models |
title_fullStr |
Bayesian and classical inference for the generalized gamma distribution and related models |
title_full_unstemmed |
Bayesian and classical inference for the generalized gamma distribution and related models |
title_sort |
Bayesian and classical inference for the generalized gamma distribution and related models |
author |
Ramos, Pedro Luiz |
author_facet |
Ramos, Pedro Luiz |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/7642527593263517 |
dc.contributor.author.fl_str_mv |
Ramos, Pedro Luiz |
dc.contributor.advisor1.fl_str_mv |
Louzada Neto, Francisco |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0994050156415890 |
dc.contributor.authorID.fl_str_mv |
9e317b1b-964a-4a7b-9e13-bd7ce9131efc |
contributor_str_mv |
Louzada Neto, Francisco |
dc.subject.por.fl_str_mv |
Distribuição gama generalizada Distribuição Nakagami-m Distribuição gama Métodos bayesianos |
topic |
Distribuição gama generalizada Distribuição Nakagami-m Distribuição gama Métodos bayesianos CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA PARAMETRICA |
description |
The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreys's rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-05-10T18:45:09Z |
dc.date.available.fl_str_mv |
2018-05-10T18:45:09Z |
dc.date.issued.fl_str_mv |
2018-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RAMOS, Pedro Luiz. Bayesian and classical inference for the generalized gamma distribution and related models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9962. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/9962 |
identifier_str_mv |
RAMOS, Pedro Luiz. Bayesian and classical inference for the generalized gamma distribution and related models. 2018. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9962. |
url |
https://repositorio.ufscar.br/handle/ufscar/9962 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 |
dc.relation.authority.fl_str_mv |
d0f3b31a-38c4-4c28-aa5b-837ad377108e |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/9962/3/02%20-%20Tese%20UFSCar.pdf https://repositorio.ufscar.br/bitstream/ufscar/9962/4/03%20-%20Autorizacao%20Orientador.pdf https://repositorio.ufscar.br/bitstream/ufscar/9962/5/license.txt https://repositorio.ufscar.br/bitstream/ufscar/9962/6/02%20-%20Tese%20UFSCar.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9962/7/03%20-%20Autorizacao%20Orientador.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9962/8/02%20-%20Tese%20UFSCar.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/9962/9/03%20-%20Autorizacao%20Orientador.pdf.jpg |
bitstream.checksum.fl_str_mv |
f5f6879056a5c15fc248608a2b258e8a 66d7cf00f533538580160d456623e1ca ae0398b6f8b235e40ad82cba6c50031d 4d3cebfc51ad99307b217078e330954f 68b329da9893e34099c7d8ad5cb9c940 cebbf0ad4429e0e5e9a0b9304b32c560 a595f81fa0f5ebf327c470a6f1dc95c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715587028746240 |