Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/13076 |
Resumo: | The objective of this thesis was to analyze and contrast the existing methodological models within the geographic information system, its techniques and indicators for environmental urban planning, aiming at building bases for smart cities To achieve the objectives, the following objectives were proposed: (a) elaborate an inventory of erosive processes in the study area; (b) generate a collection of cartographic documents; (c) build training bases for different models of artificial neural networks (one-layer perceptron neural network, multilayer perceptron neural network and ANFIS); and discuss the methods and methodologies for environmental urban planning The study area is the Monjolinho River Basin inserted in the municipalities of São Carlos and Ibaté, with an area of approximately 273,77km2. The method used included: the elaboration of an input data structure for Matlab®️, extracted from a data matrix of the maps elaborated in the ArcGIS®️ 10.5 desktop version software. The training was carried out in two phases, the first with a structure of 203,496 points, extracted from a regular matrix of 100x100m, in the second phase a new training was done, with some modifications in the structure, two models were trained, design 1 with crisps data and design 2 with data normalized between 0 and 1, using the perceptron method with a layer, with a 30x30m matrix, with 13,152, 355 representing erosions. In the process, the removal of tuples with invalid data (for example, values -9999), counting the number of occurrences of repeated tuples and ending the removal of repeated tuples, all these steps were done to equalize the imbalance of the classes, totaling 710 “non-erosion” and 355 “erosion” maintaining a 2 to 1 ratio With the new training, a model was sought to more accurately represent the occurrence of erosive processes, so it is necessary that the values that represent false negatives are low, as it is critical for the system to indicate that there is no erosion when it actually exists. In this sense, the perceptron network of design 2 was the one that presented the best results, presenting less occurrence of false negative values than design 1. |
id |
SCAR_bf3a81905d105b08b30a48057e8d89bc |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/13076 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Serikawa, Vagner de SouzaMelanda, Edson Augustohttp://lattes.cnpq.br/1554762456965991http://lattes.cnpq.br/68792678384697802a22b06e-8c12-431e-883d-26eeabb91e4d2020-07-27T12:31:34Z2020-07-27T12:31:34Z2020-04-16SERIKAWA, Vagner de Souza. Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão. 2020. Tese (Doutorado em Engenharia Urbana) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13076.https://repositorio.ufscar.br/handle/ufscar/13076The objective of this thesis was to analyze and contrast the existing methodological models within the geographic information system, its techniques and indicators for environmental urban planning, aiming at building bases for smart cities To achieve the objectives, the following objectives were proposed: (a) elaborate an inventory of erosive processes in the study area; (b) generate a collection of cartographic documents; (c) build training bases for different models of artificial neural networks (one-layer perceptron neural network, multilayer perceptron neural network and ANFIS); and discuss the methods and methodologies for environmental urban planning The study area is the Monjolinho River Basin inserted in the municipalities of São Carlos and Ibaté, with an area of approximately 273,77km2. The method used included: the elaboration of an input data structure for Matlab®️, extracted from a data matrix of the maps elaborated in the ArcGIS®️ 10.5 desktop version software. The training was carried out in two phases, the first with a structure of 203,496 points, extracted from a regular matrix of 100x100m, in the second phase a new training was done, with some modifications in the structure, two models were trained, design 1 with crisps data and design 2 with data normalized between 0 and 1, using the perceptron method with a layer, with a 30x30m matrix, with 13,152, 355 representing erosions. In the process, the removal of tuples with invalid data (for example, values -9999), counting the number of occurrences of repeated tuples and ending the removal of repeated tuples, all these steps were done to equalize the imbalance of the classes, totaling 710 “non-erosion” and 355 “erosion” maintaining a 2 to 1 ratio With the new training, a model was sought to more accurately represent the occurrence of erosive processes, so it is necessary that the values that represent false negatives are low, as it is critical for the system to indicate that there is no erosion when it actually exists. In this sense, the perceptron network of design 2 was the one that presented the best results, presenting less occurrence of false negative values than design 1.O objetivo desta tese foi analisar e contrapor os modelos metodológicos existentes dentro do sistema de informações geográficas, suas técnicas e indicadores para o planejamento urbano ambiental, visando construções de bases para cidades inteligentes. Para atingir os objetivos, foram propostos os seguintes objetivos: (a) elaborar um inventário de processos erosivos na área de estudo; (b) gerar uma coleção de documentos cartográficos; (c) construir bases de treinamento para diferentes modelos de redes neurais artificiais (rede neural perceptron com uma camada, rede neural multilayer perceptron e ANFIS); e discutir os métodos e metodologias para o planejamento urbano ambiental. A área de estudo é a Bacia Hidrográfica do Rio Monjolinho inserida nos municípios de São Carlos e Ibaté, possui uma área de aproximadamente 273,77km2. O método utilizado abrangeu: a elaboração de uma estrutura de dados de entrada para o Matlab®, extraídos de uma matriz de dados dos mapas elaborados no software ArcGIS® 10.5 versão desktop. O treinamento foi realizado em duas fases, o primeiro com uma estrutura de 203.496 pontos, extraídos de uma matriz regular de 100x100m, na segunda fase um novo treinamento foi feito, com algumas modificações na estrutura, foram treinados dois modelos, design 1 com dados crisps e o design 2 com dados normalizados entre 0 e 1, utilizando o método perceptron com uma camada, com uma matriz de 30x30m, com 13.152, sendo 355 representando as erosões. No processamento ocorreu a remoção de tuplas com dados inválidos (por exemplo, valores -9999), a contagem do número de ocorrências de tuplas repetidas e pôr fim a remoção de tuplas repetidas, todos esses passos foram para equalizar o desbalanceamento das classes, totalizando 710 de “não erosão” e 355 de “erosão” mantendo uma proporção de 2 para 1. Buscou-se com os novos treinamentos um modelo representasse com maior precisão a ocorrência de processos erosivos, por isso é ncessário que os valores que representam os falsos negativos sejam baixos, pois é crítico para o sistema indicar que não existe erosão quando na verdade existe. Nesse sentido, a rede perceptron do design 2 foi a que apresentou os melhores resultados, apresentando menor ocorrência de valores de falsos negativos do que o design 1.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88882.426616/2019-01CAPES: Código de Financiamento 001porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Urbana - PPGEUUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessErosãoGeoinformaçãoFISANFISSIGErosionGeoinformationGISENGENHARIAS::ENGENHARIA CIVIL::GEOTECNICAAplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosãoApplication and evaluation of neuro-fuzzy techniques for the elaboration of erosion susceptibility mapsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006008c98af89-dc5b-4731-9ac8-a87444ce8e24reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Serikawa_2020_vf.pdfTese_Serikawa_2020_vf.pdfVersão Final da Teseapplication/pdf49221884https://repositorio.ufscar.br/bitstream/ufscar/13076/1/Tese_Serikawa_2020_vf.pdfee7337f5c555796f41d504e7f327ed3bMD51Termo de Concordância_VF_ Vagner_Serikawa.pdfTermo de Concordância_VF_ Vagner_Serikawa.pdfTermo de Concordância do Orientadorapplication/pdf70811https://repositorio.ufscar.br/bitstream/ufscar/13076/3/Termo%20de%20Concorda%cc%82ncia_VF_%20Vagner_Serikawa.pdfe64b635ab87abee0ad1dbacf70288a5dMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/13076/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTese_Serikawa_2020_vf.pdf.txtTese_Serikawa_2020_vf.pdf.txtExtracted texttext/plain296754https://repositorio.ufscar.br/bitstream/ufscar/13076/5/Tese_Serikawa_2020_vf.pdf.txt297e115b97b2a35866f5521974c8ec46MD55Termo de Concordância_VF_ Vagner_Serikawa.pdf.txtTermo de Concordância_VF_ Vagner_Serikawa.pdf.txtExtracted texttext/plain1239https://repositorio.ufscar.br/bitstream/ufscar/13076/7/Termo%20de%20Concorda%cc%82ncia_VF_%20Vagner_Serikawa.pdf.txt8db514d876a797eb9ede644608c9284aMD57THUMBNAILTese_Serikawa_2020_vf.pdf.jpgTese_Serikawa_2020_vf.pdf.jpgIM Thumbnailimage/jpeg7072https://repositorio.ufscar.br/bitstream/ufscar/13076/6/Tese_Serikawa_2020_vf.pdf.jpg32afaaf37ba26e35d7c294b6747b69e0MD56Termo de Concordância_VF_ Vagner_Serikawa.pdf.jpgTermo de Concordância_VF_ Vagner_Serikawa.pdf.jpgIM Thumbnailimage/jpeg14088https://repositorio.ufscar.br/bitstream/ufscar/13076/8/Termo%20de%20Concorda%cc%82ncia_VF_%20Vagner_Serikawa.pdf.jpg9af7733e4e0c715040fbf77f43c39f2cMD58ufscar/130762023-09-18 18:31:58.571oai:repositorio.ufscar.br:ufscar/13076Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:58Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
dc.title.alternative.eng.fl_str_mv |
Application and evaluation of neuro-fuzzy techniques for the elaboration of erosion susceptibility maps |
title |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
spellingShingle |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão Serikawa, Vagner de Souza Erosão Geoinformação FIS ANFIS SIG Erosion Geoinformation GIS ENGENHARIAS::ENGENHARIA CIVIL::GEOTECNICA |
title_short |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
title_full |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
title_fullStr |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
title_full_unstemmed |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
title_sort |
Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão |
author |
Serikawa, Vagner de Souza |
author_facet |
Serikawa, Vagner de Souza |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6879267838469780 |
dc.contributor.author.fl_str_mv |
Serikawa, Vagner de Souza |
dc.contributor.advisor1.fl_str_mv |
Melanda, Edson Augusto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1554762456965991 |
dc.contributor.authorID.fl_str_mv |
2a22b06e-8c12-431e-883d-26eeabb91e4d |
contributor_str_mv |
Melanda, Edson Augusto |
dc.subject.por.fl_str_mv |
Erosão Geoinformação FIS ANFIS SIG |
topic |
Erosão Geoinformação FIS ANFIS SIG Erosion Geoinformation GIS ENGENHARIAS::ENGENHARIA CIVIL::GEOTECNICA |
dc.subject.eng.fl_str_mv |
Erosion Geoinformation GIS |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA CIVIL::GEOTECNICA |
description |
The objective of this thesis was to analyze and contrast the existing methodological models within the geographic information system, its techniques and indicators for environmental urban planning, aiming at building bases for smart cities To achieve the objectives, the following objectives were proposed: (a) elaborate an inventory of erosive processes in the study area; (b) generate a collection of cartographic documents; (c) build training bases for different models of artificial neural networks (one-layer perceptron neural network, multilayer perceptron neural network and ANFIS); and discuss the methods and methodologies for environmental urban planning The study area is the Monjolinho River Basin inserted in the municipalities of São Carlos and Ibaté, with an area of approximately 273,77km2. The method used included: the elaboration of an input data structure for Matlab®️, extracted from a data matrix of the maps elaborated in the ArcGIS®️ 10.5 desktop version software. The training was carried out in two phases, the first with a structure of 203,496 points, extracted from a regular matrix of 100x100m, in the second phase a new training was done, with some modifications in the structure, two models were trained, design 1 with crisps data and design 2 with data normalized between 0 and 1, using the perceptron method with a layer, with a 30x30m matrix, with 13,152, 355 representing erosions. In the process, the removal of tuples with invalid data (for example, values -9999), counting the number of occurrences of repeated tuples and ending the removal of repeated tuples, all these steps were done to equalize the imbalance of the classes, totaling 710 “non-erosion” and 355 “erosion” maintaining a 2 to 1 ratio With the new training, a model was sought to more accurately represent the occurrence of erosive processes, so it is necessary that the values that represent false negatives are low, as it is critical for the system to indicate that there is no erosion when it actually exists. In this sense, the perceptron network of design 2 was the one that presented the best results, presenting less occurrence of false negative values than design 1. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-07-27T12:31:34Z |
dc.date.available.fl_str_mv |
2020-07-27T12:31:34Z |
dc.date.issued.fl_str_mv |
2020-04-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SERIKAWA, Vagner de Souza. Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão. 2020. Tese (Doutorado em Engenharia Urbana) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13076. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/13076 |
identifier_str_mv |
SERIKAWA, Vagner de Souza. Aplicação e avaliação de técnicas neuro-fuzzy para a elaboração de mapas de susceptibilidade a erosão. 2020. Tese (Doutorado em Engenharia Urbana) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13076. |
url |
https://repositorio.ufscar.br/handle/ufscar/13076 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
8c98af89-dc5b-4731-9ac8-a87444ce8e24 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Urbana - PPGEU |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/13076/1/Tese_Serikawa_2020_vf.pdf https://repositorio.ufscar.br/bitstream/ufscar/13076/3/Termo%20de%20Concorda%cc%82ncia_VF_%20Vagner_Serikawa.pdf https://repositorio.ufscar.br/bitstream/ufscar/13076/4/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/13076/5/Tese_Serikawa_2020_vf.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/13076/7/Termo%20de%20Concorda%cc%82ncia_VF_%20Vagner_Serikawa.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/13076/6/Tese_Serikawa_2020_vf.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/13076/8/Termo%20de%20Concorda%cc%82ncia_VF_%20Vagner_Serikawa.pdf.jpg |
bitstream.checksum.fl_str_mv |
ee7337f5c555796f41d504e7f327ed3b e64b635ab87abee0ad1dbacf70288a5d e39d27027a6cc9cb039ad269a5db8e34 297e115b97b2a35866f5521974c8ec46 8db514d876a797eb9ede644608c9284a 32afaaf37ba26e35d7c294b6747b69e0 9af7733e4e0c715040fbf77f43c39f2c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715618951593984 |