Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades

Detalhes bibliográficos
Autor(a) principal: Komatsu, Daniel
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/6278
Resumo: Polymer nanocomposites filled with lamellar silicates are considered hybrid materials (organic-inorganic) of great interest both in industry and the universities, since their properties are superior to neat polymer. In this work LLDPE/ montmorillonite clay (Cloisite 20A) nanocomposites were prepared by diluting a masterbatch (20%w/w) clay, on a twin-screw extruder to get final concentrations of 1.5%, 2.5%, 5.0 %, 7.5% and 10.0% clay, by using LLDPE-g-MA as compatibilizer in a 2:1 ratio with the montmorillonite clay. With the aid of the techniques for structural characterization, it was observed that the montmorillonite clay shows good distribution in the nanocomposite up to 5.0% clay and, moreover these samples clay are dispersed in intercalated and exfoliated (predominantly) forms. In nanocomposites 7.5 and 10.0% clay was observed that the distribution and dispersion are impaired, coexisting intercalated and aggregate clay form (predominantly). TEM images were used to estimate the aspect ratio of the dispersed clay in the nanocomposite. In this case, the nanocomposite with 1.5% clay showed value between 10 and 12. Using thermogravimetric analysis, it was possible to evaluate the thermal stability. In this case can be observed that the clay increased the thermal stability of the matrix of LLDPE with only 1.5% clay. DSC curves showed that there is no strong interaction between montmorillonite clay and LLDPE, since there is no displacement of the melting peaks of these nanocomposites compared to the peak of neat LLDPE. The clay improves also the mechanical properties of the nanocomposites relative to LLDPE and increase the modulus value around 50% and 20% for impact resistance with 5.0% montmorillonite clay. The gas permeation test shows that the montmorillonite clay improves the barrier property of LLDPE to water vapor, oxygen and carbon dioxide. In addition, the sorption test shows that the clay improves also the barrier property to dichloromethane molecules. Finally these montmorillonite clay nanocomposites were exposed to water and fuels aging and after this their properties were characterized and it was related to their structure after aging. In this case, it is observed that the aging process causes a change in its structure and it reflects the final property of polymeric material (mechanical, thermal, barrier).
id SCAR_bf48b2af4c3d9e810bd982641d3cf6cd
oai_identifier_str oai:repositorio.ufscar.br:ufscar/6278
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Komatsu, DanielRuvolo Filho, Adhemar Collahttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787583A0http://lattes.cnpq.br/2620060426867863d17edb65-48d3-40b2-8ac2-ed44fb18e4eb2016-06-02T20:34:46Z2013-09-062016-06-02T20:34:46Z2013-06-25https://repositorio.ufscar.br/handle/ufscar/6278Polymer nanocomposites filled with lamellar silicates are considered hybrid materials (organic-inorganic) of great interest both in industry and the universities, since their properties are superior to neat polymer. In this work LLDPE/ montmorillonite clay (Cloisite 20A) nanocomposites were prepared by diluting a masterbatch (20%w/w) clay, on a twin-screw extruder to get final concentrations of 1.5%, 2.5%, 5.0 %, 7.5% and 10.0% clay, by using LLDPE-g-MA as compatibilizer in a 2:1 ratio with the montmorillonite clay. With the aid of the techniques for structural characterization, it was observed that the montmorillonite clay shows good distribution in the nanocomposite up to 5.0% clay and, moreover these samples clay are dispersed in intercalated and exfoliated (predominantly) forms. In nanocomposites 7.5 and 10.0% clay was observed that the distribution and dispersion are impaired, coexisting intercalated and aggregate clay form (predominantly). TEM images were used to estimate the aspect ratio of the dispersed clay in the nanocomposite. In this case, the nanocomposite with 1.5% clay showed value between 10 and 12. Using thermogravimetric analysis, it was possible to evaluate the thermal stability. In this case can be observed that the clay increased the thermal stability of the matrix of LLDPE with only 1.5% clay. DSC curves showed that there is no strong interaction between montmorillonite clay and LLDPE, since there is no displacement of the melting peaks of these nanocomposites compared to the peak of neat LLDPE. The clay improves also the mechanical properties of the nanocomposites relative to LLDPE and increase the modulus value around 50% and 20% for impact resistance with 5.0% montmorillonite clay. The gas permeation test shows that the montmorillonite clay improves the barrier property of LLDPE to water vapor, oxygen and carbon dioxide. In addition, the sorption test shows that the clay improves also the barrier property to dichloromethane molecules. Finally these montmorillonite clay nanocomposites were exposed to water and fuels aging and after this their properties were characterized and it was related to their structure after aging. In this case, it is observed that the aging process causes a change in its structure and it reflects the final property of polymeric material (mechanical, thermal, barrier).Os nanocompósitos poliméricos preenchidos com silicatos lamelares são materiais híbridos (orgânico-inorgânico) de grande interesse, tanto nas indústrias quanto nas universidades, uma vez que suas propriedades são geralmente superiores ao polímero puro. Neste trabalho foram preparados nanocompósitos de LLDPE/argila montmorilonita (Cloisite 20A) através da diluição de um concentrado contendo 20% de argila, em uma extrusora dupla rosca obtendo-se concentrações finais de 1,5%; 2,5%; 5,0%; 7,5% e 10,0% (m/m) de argila em massa, sendo utilizado o LLDPE-g-MA como compatibilizante na proporção de 2:1 com a argila montmorilonita. Com o auxílio das técnicas de caracterização estrutural foi possível observar que a argila apresenta uma boa distribuição nos nanocompósitos até 5,0% de argila e, além disso, nessas amostras a argila está dispersa na forma esfoliada e intercalada, prevalecendo à primeira forma. Nos nanocompósitos com 7,5 e 10,0% de argila observa-se que a distribuição e a dispersão são prejudicadas, coexistindo, nesse caso, a argila na forma intercalada e agregada (majoritariamente). Através das imagens de MET foi possível estimar a razão de aspecto da argila dispersa no nanocompósito e, nesse caso, o nanocompósito com 1,5% de argila apresentou um valor entre 10 e 12. Com o auxílio das técnicas de análise térmica foi possível, utilizando a análise termogravimétrica, observar que a argila aumentou a estabilidade térmica da matriz do LLDPE, sendo a concentração de 1,5% de argila a mais adequada para essa finalidade. O DSC mostrou que não há forte interação entre a argila e o LLDPE, pois não há deslocamento dos picos de fusão dos nanocompósitos em relação ao pico do LLDPE. A argila melhora, também, a propriedade mecânica dos nanocompósitos em relação ao LLDPE, sendo esse aumento próximo a 50% para o módulo elástico e próximo a 20% para a resistência ao impacto com 5,0% de argila. O ensaio de permeação a gases mostra que a argila melhora a propriedade de barreira desse material ao vapor de água, oxigênio e ao dióxido de carbono. Além disso, o ensaio de sorção mostra que a argila melhora, também, a propriedade de barreira as moléculas do dicloro metano. Por fim esses nanocompósitos foram expostos ao envelhecimento em água e combustíveis, sendo após esse período analisadas as suas propriedades e relacionadas com a sua estrutura pós-envelhecimento. Nesse caso, observa-se que o envelhecimento causa uma mudança na estrutura das amostras e isso reflete na propriedade final desse material polimérico (mecânica, térmica, transporte).Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarBRPolímerosNanocompósitosPolietileno linear de baixa densidadeArgila organofílicaEstruturaPropriedadesCIENCIAS EXATAS E DA TERRA::QUIMICANanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedadesLLDPE/montmorillonite clay (cloisite 20A) nanocomposites: processing, morphology and propertiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-10b030418-f310-498e-a166-e7c18306af8einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL5364.pdfapplication/pdf3650562https://repositorio.ufscar.br/bitstream/ufscar/6278/1/5364.pdfff2e4c9a2405a7d1c18ac564fe045688MD51TEXT5364.pdf.txt5364.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/6278/4/5364.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD54THUMBNAIL5364.pdf.jpg5364.pdf.jpgIM Thumbnailimage/jpeg10178https://repositorio.ufscar.br/bitstream/ufscar/6278/5/5364.pdf.jpg74538adf4637a46d94629a8abf4a087dMD55ufscar/62782023-09-18 18:30:32.826oai:repositorio.ufscar.br:ufscar/6278Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:32Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
dc.title.alternative.eng.fl_str_mv LLDPE/montmorillonite clay (cloisite 20A) nanocomposites: processing, morphology and properties
title Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
spellingShingle Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
Komatsu, Daniel
Polímeros
Nanocompósitos
Polietileno linear de baixa densidade
Argila organofílica
Estrutura
Propriedades
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
title_full Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
title_fullStr Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
title_full_unstemmed Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
title_sort Nanocompósitos de polietileno linear de baixa densidade (LLDPE)/argila montmorilonita: processamento, morfologia e propriedades
author Komatsu, Daniel
author_facet Komatsu, Daniel
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2620060426867863
dc.contributor.author.fl_str_mv Komatsu, Daniel
dc.contributor.advisor1.fl_str_mv Ruvolo Filho, Adhemar Colla
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787583A0
dc.contributor.authorID.fl_str_mv d17edb65-48d3-40b2-8ac2-ed44fb18e4eb
contributor_str_mv Ruvolo Filho, Adhemar Colla
dc.subject.por.fl_str_mv Polímeros
Nanocompósitos
Polietileno linear de baixa densidade
Argila organofílica
Estrutura
Propriedades
topic Polímeros
Nanocompósitos
Polietileno linear de baixa densidade
Argila organofílica
Estrutura
Propriedades
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description Polymer nanocomposites filled with lamellar silicates are considered hybrid materials (organic-inorganic) of great interest both in industry and the universities, since their properties are superior to neat polymer. In this work LLDPE/ montmorillonite clay (Cloisite 20A) nanocomposites were prepared by diluting a masterbatch (20%w/w) clay, on a twin-screw extruder to get final concentrations of 1.5%, 2.5%, 5.0 %, 7.5% and 10.0% clay, by using LLDPE-g-MA as compatibilizer in a 2:1 ratio with the montmorillonite clay. With the aid of the techniques for structural characterization, it was observed that the montmorillonite clay shows good distribution in the nanocomposite up to 5.0% clay and, moreover these samples clay are dispersed in intercalated and exfoliated (predominantly) forms. In nanocomposites 7.5 and 10.0% clay was observed that the distribution and dispersion are impaired, coexisting intercalated and aggregate clay form (predominantly). TEM images were used to estimate the aspect ratio of the dispersed clay in the nanocomposite. In this case, the nanocomposite with 1.5% clay showed value between 10 and 12. Using thermogravimetric analysis, it was possible to evaluate the thermal stability. In this case can be observed that the clay increased the thermal stability of the matrix of LLDPE with only 1.5% clay. DSC curves showed that there is no strong interaction between montmorillonite clay and LLDPE, since there is no displacement of the melting peaks of these nanocomposites compared to the peak of neat LLDPE. The clay improves also the mechanical properties of the nanocomposites relative to LLDPE and increase the modulus value around 50% and 20% for impact resistance with 5.0% montmorillonite clay. The gas permeation test shows that the montmorillonite clay improves the barrier property of LLDPE to water vapor, oxygen and carbon dioxide. In addition, the sorption test shows that the clay improves also the barrier property to dichloromethane molecules. Finally these montmorillonite clay nanocomposites were exposed to water and fuels aging and after this their properties were characterized and it was related to their structure after aging. In this case, it is observed that the aging process causes a change in its structure and it reflects the final property of polymeric material (mechanical, thermal, barrier).
publishDate 2013
dc.date.available.fl_str_mv 2013-09-06
2016-06-02T20:34:46Z
dc.date.issued.fl_str_mv 2013-06-25
dc.date.accessioned.fl_str_mv 2016-06-02T20:34:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/6278
url https://repositorio.ufscar.br/handle/ufscar/6278
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 0b030418-f310-498e-a166-e7c18306af8e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/6278/1/5364.pdf
https://repositorio.ufscar.br/bitstream/ufscar/6278/4/5364.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/6278/5/5364.pdf.jpg
bitstream.checksum.fl_str_mv ff2e4c9a2405a7d1c18ac564fe045688
d41d8cd98f00b204e9800998ecf8427e
74538adf4637a46d94629a8abf4a087d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136293260394496