Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/11524 |
Resumo: | In this work we studied the structural, optical and electronic transport properties of intrinsic and doped SnO2 nanowires with different concentrations of antimony (Sb) grown by the Vapor-Liquid-Solid mechanism (VLS). Results from X-ray diffraction (XRD) combined with Rietveld refinement, indicated the formation of single phase samples corresponding to the tetragonal Rutile structure of SnO2 belonging to the P42/mnm spatial group. Raman spectroscopy data also indicated the formation of rutile phase corroborating the XRD measurements. The appearance of inactive vibrational modes (242 and 284 cm-1) only for the doped samples was attributed to the effects of disorder. XPS analyzes confirmed the presence of Sb in doped samples. The presence of Sb was evidenced by the superposition of the O1s and Sb3d regions and only one oxidation state (Sb5+) was detected. Absorbance spectra indicated that the doped samples exhibited an energy gap (3,40 - 3,66 eV) greater than that for pure samples (3,3 eV). This result is consistent with the Burstein-Moss model which describes the shift of the absorption limit due to the increase of the density of charged carriers. From photoluminescence spectra it was observed that the SnO2 samples presented three emission peaks related to oxygen vacancies, V0+ (red), (V0+)iso (yellow/orange) and V0++ (green). The green emitter center was actived only below T = 100 K. ATO samples showed only two emission peaks: the red emitting center (V0+) also present in pure samples and a doping-related blue-violet emitter center located at 2,58 - 2,84 eV. Temperature dependent resistivity data showed that the SnO2 samples presented a typical behavior of a semiconductor material, while ATO samples presented a transition from an insulating state (dR/dT < 0) to a metallic one (dR/dT > 0) around 90 - 170 K depending on the doping level. The semiconductor phase was characterized by two electron conduction mechanisms: thermal activation and variable range hopping (VRH). The metal phase was characterized by electron-electron and electron-phonon scatterings. The electron-phonon process was predominant at high temperatures leading to the calculation of the Debye temperature of the samples (ΘD = 602 - 657 K). All doped samples were characterized by doping levels above the Mott limit (ncMott = 6,7 x 10^23 m-3) thus satisfying the Mott criterion for observation of the metal-insulator transition based on the electron-electron interaction. In addition, it was observed that both the nanowire device and the SnO2 nanowire network device exhibit persistent photoconductivity (PPC) which is directly related to the presence of oxygen vacancies. For the nanowire network, the PPC effect was only observed under vacuum conditions, since under room environment conditions the nanowire-nanowire junctions strongly affect the electric current through the device. However, only for the single nanowire device we observed PPC also under high temperatures. The energy level attributed to the emitting center V0++ can be seen as responsible for the anomalous behavior in the low temperature resistivity curves (T < 100 K). |
id |
SCAR_c181d695181fd4c2cd81e367a15a2156 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/11524 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Costa, Ivani MenesesChiquito, Adenilson Joséhttp://lattes.cnpq.br/7087360072774314http://lattes.cnpq.br/06663477343525706f71316d-e98c-4d26-8944-d96126787f222019-07-18T11:58:55Z2019-07-18T11:58:55Z2019-03-15COSTA, Ivani Meneses. Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente. 2019. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11524.https://repositorio.ufscar.br/handle/ufscar/11524In this work we studied the structural, optical and electronic transport properties of intrinsic and doped SnO2 nanowires with different concentrations of antimony (Sb) grown by the Vapor-Liquid-Solid mechanism (VLS). Results from X-ray diffraction (XRD) combined with Rietveld refinement, indicated the formation of single phase samples corresponding to the tetragonal Rutile structure of SnO2 belonging to the P42/mnm spatial group. Raman spectroscopy data also indicated the formation of rutile phase corroborating the XRD measurements. The appearance of inactive vibrational modes (242 and 284 cm-1) only for the doped samples was attributed to the effects of disorder. XPS analyzes confirmed the presence of Sb in doped samples. The presence of Sb was evidenced by the superposition of the O1s and Sb3d regions and only one oxidation state (Sb5+) was detected. Absorbance spectra indicated that the doped samples exhibited an energy gap (3,40 - 3,66 eV) greater than that for pure samples (3,3 eV). This result is consistent with the Burstein-Moss model which describes the shift of the absorption limit due to the increase of the density of charged carriers. From photoluminescence spectra it was observed that the SnO2 samples presented three emission peaks related to oxygen vacancies, V0+ (red), (V0+)iso (yellow/orange) and V0++ (green). The green emitter center was actived only below T = 100 K. ATO samples showed only two emission peaks: the red emitting center (V0+) also present in pure samples and a doping-related blue-violet emitter center located at 2,58 - 2,84 eV. Temperature dependent resistivity data showed that the SnO2 samples presented a typical behavior of a semiconductor material, while ATO samples presented a transition from an insulating state (dR/dT < 0) to a metallic one (dR/dT > 0) around 90 - 170 K depending on the doping level. The semiconductor phase was characterized by two electron conduction mechanisms: thermal activation and variable range hopping (VRH). The metal phase was characterized by electron-electron and electron-phonon scatterings. The electron-phonon process was predominant at high temperatures leading to the calculation of the Debye temperature of the samples (ΘD = 602 - 657 K). All doped samples were characterized by doping levels above the Mott limit (ncMott = 6,7 x 10^23 m-3) thus satisfying the Mott criterion for observation of the metal-insulator transition based on the electron-electron interaction. In addition, it was observed that both the nanowire device and the SnO2 nanowire network device exhibit persistent photoconductivity (PPC) which is directly related to the presence of oxygen vacancies. For the nanowire network, the PPC effect was only observed under vacuum conditions, since under room environment conditions the nanowire-nanowire junctions strongly affect the electric current through the device. However, only for the single nanowire device we observed PPC also under high temperatures. The energy level attributed to the emitting center V0++ can be seen as responsible for the anomalous behavior in the low temperature resistivity curves (T < 100 K).Neste trabalho foram investigadas as propriedades estruturais, ópticas e o transporte eletrônico de nanofios de SnO2 intrínsecos e dopados com diferentes concentrações de antimônio (Sb) crescidos pelo mecanismo VLS (Vapor-Líquido-Sólido). Resultados de Difração de Raios X (DRX) aliados ao método de refinamento Rietveld comprovaram a formação da fase única para todas as amostras correspondente à fase Rutila do SnO2 com simetria tetragonal e grupo espacial P42/mnm. Análises de XPS confirmaram a presença de antimônio nos nanofios apresentando somente um estado de oxidação (Sb5+). Através dos espectros de absorbância verificou-se que as amostras dopadas apresentaram um leve aumento no valor do gap de energia (3,40 - 3,66 eV) quando comparados ao gap da amostra pura (3,3 eV). O resultado é consistente com o modelo de Burstein-Moss, o qual descreve o deslocamento do limite de absorção em virtude do aumento da densidade de portadores de carga. Foi observado através das medidas de fotoluminescência, que a amostra de SnO2 é composta por três centros emissores relacionados a vacâncias de oxigênio, V0+ (vermelho), (V0+)iso (amarelo/laranja ) e V0++ (verde). O centro emissor verde torna-se ativo somente abaixo de T = 100 K. As amostras de ATO apresentaram somente dois centros emissores: o centro emissor vermelho (V0+) também presente na amostra pura e um centro emissor azul-violeta relacionado a dopagem localizado em 2,58 - 2,84 eV. Dos resultados de transporte eletrônico observou-se que as amostras de SnO2 apresentaram um comportamento típico de um material semicondutor, enquanto que as amostras de ATO apresentaram uma transição de um estado isolante (dR/dT < 0) para um estado metálico (dR/dT > 0) em torno de 90 - 170 K dependendo do nível de dopagem. A fase semicondutora dos nanofios foi caracterizada por dois mecanismos de condução eletrônica: ativação térmica e hopping de alcance variável. A fase metálica foi caracterizada por espalhamento elétron-elétron e espalhamento elétron-fônon (teoria de Bloch-Gruneisen) predominante em altas temperaturas levando ao cálculo da temperatura de Debye para as amostras (ΘD = 602 - 657 K). Todas as amostras dopadas foram caracterizadas por níveis de dopagem acima do limite de Mott (ncMott = 6,7 x 10^23 m-3) satisfazendo assim o critério de Mott para observação da transição metal-isolante baseada na interação elétron-elétron. Adicionalmente foi observado que tanto o dispositivo de um nanofio quanto o dispositivo de uma rede de nanofios de SnO2 apresentaram o efeito de fotocondutividade persistente (PPC) o qual está diretamente relacionado à presença de vacâncias de oxigênio. No caso de uma rede de nanofios o efeito PPC só foi observado quando os experimentos foram realizados em condições de vácuo, uma vez que em condições ambiente a junção nanofio-nanofio interfere de forma acentuada na corrente elétrica de uma rede de nanofios. Porém, somente no dispositivo de um único nanofio o efeito PPC pode ser observado também em condições de alta temperatura. O nível de energia atribuído ao centro emissor V0++ pode ser visto, então, como o responsável pelo comportamento anômalo nas curvas de resistividade em baixa temperatura (T < 100 K).Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarNanofiosTransporte eletrônicoTransição metal-isolanteFotocondutividade persistenteNanowiresElectronic transportMetal-insulator transitionPersistent photoconductivitySnO2ATOCIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADATransporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistenteElectronic transport in Sb-doped SnO2 nanowires: metal-insulator transition induced by doping and persistent photoconductivityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006002c000bdd-a13f-4ae3-90e3-0cfe1cb12110info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALCostaIM_2019.pdfCostaIM_2019.pdfTeseapplication/pdf22342573https://repositorio.ufscar.br/bitstream/ufscar/11524/3/CostaIM_2019.pdfe0cc6ac5d33def7b1308a5da28c006efMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11524/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54TEXTCostaIM_2019.pdf.txtCostaIM_2019.pdf.txtExtracted texttext/plain289141https://repositorio.ufscar.br/bitstream/ufscar/11524/5/CostaIM_2019.pdf.txt7a7dec1f50df4e78859e509b88a25bd5MD55THUMBNAILCostaIM_2019.pdf.jpgCostaIM_2019.pdf.jpgIM Thumbnailimage/jpeg8468https://repositorio.ufscar.br/bitstream/ufscar/11524/6/CostaIM_2019.pdf.jpg79da0bd5734c7fbbc97fa50bc0467fbeMD56ufscar/115242023-09-18 18:31:13.603oai:repositorio.ufscar.br:ufscar/11524TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
dc.title.alternative.eng.fl_str_mv |
Electronic transport in Sb-doped SnO2 nanowires: metal-insulator transition induced by doping and persistent photoconductivity |
title |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
spellingShingle |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente Costa, Ivani Meneses Nanofios Transporte eletrônico Transição metal-isolante Fotocondutividade persistente Nanowires Electronic transport Metal-insulator transition Persistent photoconductivity SnO2 ATO CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA |
title_short |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
title_full |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
title_fullStr |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
title_full_unstemmed |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
title_sort |
Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente |
author |
Costa, Ivani Meneses |
author_facet |
Costa, Ivani Meneses |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0666347734352570 |
dc.contributor.author.fl_str_mv |
Costa, Ivani Meneses |
dc.contributor.advisor1.fl_str_mv |
Chiquito, Adenilson José |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7087360072774314 |
dc.contributor.authorID.fl_str_mv |
6f71316d-e98c-4d26-8944-d96126787f22 |
contributor_str_mv |
Chiquito, Adenilson José |
dc.subject.por.fl_str_mv |
Nanofios Transporte eletrônico Transição metal-isolante Fotocondutividade persistente |
topic |
Nanofios Transporte eletrônico Transição metal-isolante Fotocondutividade persistente Nanowires Electronic transport Metal-insulator transition Persistent photoconductivity SnO2 ATO CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA |
dc.subject.eng.fl_str_mv |
Nanowires Electronic transport Metal-insulator transition Persistent photoconductivity SnO2 ATO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA |
description |
In this work we studied the structural, optical and electronic transport properties of intrinsic and doped SnO2 nanowires with different concentrations of antimony (Sb) grown by the Vapor-Liquid-Solid mechanism (VLS). Results from X-ray diffraction (XRD) combined with Rietveld refinement, indicated the formation of single phase samples corresponding to the tetragonal Rutile structure of SnO2 belonging to the P42/mnm spatial group. Raman spectroscopy data also indicated the formation of rutile phase corroborating the XRD measurements. The appearance of inactive vibrational modes (242 and 284 cm-1) only for the doped samples was attributed to the effects of disorder. XPS analyzes confirmed the presence of Sb in doped samples. The presence of Sb was evidenced by the superposition of the O1s and Sb3d regions and only one oxidation state (Sb5+) was detected. Absorbance spectra indicated that the doped samples exhibited an energy gap (3,40 - 3,66 eV) greater than that for pure samples (3,3 eV). This result is consistent with the Burstein-Moss model which describes the shift of the absorption limit due to the increase of the density of charged carriers. From photoluminescence spectra it was observed that the SnO2 samples presented three emission peaks related to oxygen vacancies, V0+ (red), (V0+)iso (yellow/orange) and V0++ (green). The green emitter center was actived only below T = 100 K. ATO samples showed only two emission peaks: the red emitting center (V0+) also present in pure samples and a doping-related blue-violet emitter center located at 2,58 - 2,84 eV. Temperature dependent resistivity data showed that the SnO2 samples presented a typical behavior of a semiconductor material, while ATO samples presented a transition from an insulating state (dR/dT < 0) to a metallic one (dR/dT > 0) around 90 - 170 K depending on the doping level. The semiconductor phase was characterized by two electron conduction mechanisms: thermal activation and variable range hopping (VRH). The metal phase was characterized by electron-electron and electron-phonon scatterings. The electron-phonon process was predominant at high temperatures leading to the calculation of the Debye temperature of the samples (ΘD = 602 - 657 K). All doped samples were characterized by doping levels above the Mott limit (ncMott = 6,7 x 10^23 m-3) thus satisfying the Mott criterion for observation of the metal-insulator transition based on the electron-electron interaction. In addition, it was observed that both the nanowire device and the SnO2 nanowire network device exhibit persistent photoconductivity (PPC) which is directly related to the presence of oxygen vacancies. For the nanowire network, the PPC effect was only observed under vacuum conditions, since under room environment conditions the nanowire-nanowire junctions strongly affect the electric current through the device. However, only for the single nanowire device we observed PPC also under high temperatures. The energy level attributed to the emitting center V0++ can be seen as responsible for the anomalous behavior in the low temperature resistivity curves (T < 100 K). |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-07-18T11:58:55Z |
dc.date.available.fl_str_mv |
2019-07-18T11:58:55Z |
dc.date.issued.fl_str_mv |
2019-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
COSTA, Ivani Meneses. Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente. 2019. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11524. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/11524 |
identifier_str_mv |
COSTA, Ivani Meneses. Transporte eletrônico em nanofios de SnO2 dopado com Sb: transição metal-isolante induzida pela dopagem e fotocondutividade persistente. 2019. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11524. |
url |
https://repositorio.ufscar.br/handle/ufscar/11524 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
2c000bdd-a13f-4ae3-90e3-0cfe1cb12110 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Física - PPGF |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/11524/3/CostaIM_2019.pdf https://repositorio.ufscar.br/bitstream/ufscar/11524/4/license.txt https://repositorio.ufscar.br/bitstream/ufscar/11524/5/CostaIM_2019.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/11524/6/CostaIM_2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
e0cc6ac5d33def7b1308a5da28c006ef ae0398b6f8b235e40ad82cba6c50031d 7a7dec1f50df4e78859e509b88a25bd5 79da0bd5734c7fbbc97fa50bc0467fbe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715605153382400 |