Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas

Detalhes bibliográficos
Autor(a) principal: Semanate, José Luis Narváez
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/829
Resumo: Technological advances in portable devices imply not only the development of devices but also the need to enhance their power sources. For instance, cellular phones with high technology incorporating Bluetooth, Infrared, Digital Camera, Games, GPS, Internet Browsing, etc., need high performance rechargeable batteries. Lithium ion-conducting glass-ceramics with NASICONtype structure, based on the Li1+xMxM'2-x(PO4)3 system, where M = Al, Cr, Fe, Ga and M' = Ge, Ti, Hf, are considered good candidates as solid electrolytes in lithium ion batteries due to their chemical stability, easy fabrication and high ionic conductivity. In this work, the Li1+xAlxTi2-x(PO4)3 glass composition was synthesized by the traditional method known as Splat Cooling. Glass-ceramics with the same composition as the precursor glass but with different microstructures were obtained by controlled crystallization, using single and double heat treatments. The parent glass was characterized by chemical and thermal analysis and the latter enabled tailoring of the crystallization heat treatments. X-ray diffraction (XRD) results indicated that the resulting glassceramics exhibit the desired NASICON-type structure as primary phase, as well as the segregation of insulating phases, i.e., AlPO4 and/or TiO2, which do not affect the electrical properties. An examination of the microstructure by scanning electron microscopy (SEM) and measurements of electrical conductivity by impedance spectroscopy (IS), combined with the XRD analysis, indicated that the electrical conductivity of single heat-treated samples increases with the heat treatment temperature and hence with the increase in crystallinity. Samples synthesized by double heat treatment showed increasing electrical conductivity with decreasing nucleation treatment time and consequently with increasing average grain size.
id SCAR_c52a8a1ef0a25394084d7be074ac842b
oai_identifier_str oai:repositorio.ufscar.br:ufscar/829
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Semanate, José Luis NarváezRodrigues, Ana Candida Martinshttp://lattes.cnpq.br/4499231813051400http://lattes.cnpq.br/98245589974960230690a22b-4996-47fe-9013-65b9225efdc92016-06-02T19:12:08Z2011-01-252016-06-02T19:12:08Z2009-08-21SEMANATE, José Luis Narváez. Synthesis and electrical conductivity of Li1+xAlxTi2-x(PO4)3 glass-ceramic with different microstructures. 2009. 111 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.https://repositorio.ufscar.br/handle/ufscar/829Technological advances in portable devices imply not only the development of devices but also the need to enhance their power sources. For instance, cellular phones with high technology incorporating Bluetooth, Infrared, Digital Camera, Games, GPS, Internet Browsing, etc., need high performance rechargeable batteries. Lithium ion-conducting glass-ceramics with NASICONtype structure, based on the Li1+xMxM'2-x(PO4)3 system, where M = Al, Cr, Fe, Ga and M' = Ge, Ti, Hf, are considered good candidates as solid electrolytes in lithium ion batteries due to their chemical stability, easy fabrication and high ionic conductivity. In this work, the Li1+xAlxTi2-x(PO4)3 glass composition was synthesized by the traditional method known as Splat Cooling. Glass-ceramics with the same composition as the precursor glass but with different microstructures were obtained by controlled crystallization, using single and double heat treatments. The parent glass was characterized by chemical and thermal analysis and the latter enabled tailoring of the crystallization heat treatments. X-ray diffraction (XRD) results indicated that the resulting glassceramics exhibit the desired NASICON-type structure as primary phase, as well as the segregation of insulating phases, i.e., AlPO4 and/or TiO2, which do not affect the electrical properties. An examination of the microstructure by scanning electron microscopy (SEM) and measurements of electrical conductivity by impedance spectroscopy (IS), combined with the XRD analysis, indicated that the electrical conductivity of single heat-treated samples increases with the heat treatment temperature and hence with the increase in crystallinity. Samples synthesized by double heat treatment showed increasing electrical conductivity with decreasing nucleation treatment time and consequently with increasing average grain size.Os avanços tecnológicos em dispositivos portáteis trazem outro aspecto que chama a atenção, tanto ou mais importante do que os próprios dispositivos desenvolvidos, i.e., a necessidade de fontes de alimentação mais poderosas. Por exemplo, telefones celulares com tecnologia de ponta que incorporam Bluetooth, Infravermelho, Câmara fotográfica, Jogos, GPS, Navegação na Internet, etc., requerem baterias recarregáveis de alto desempenho. Vitrocerâmicas condutoras por íon lítio com estrutura tipo NASICON, concretamente baseadas no sistema Li1+xMxM 2-x(PO4)3, onde M = Al, Cr, Fe, Ga e M = Ge, Ti, Hf, são consideradas boas candidatas como eletrólitos sólidos em baterias de íon lítio devido à sua estabilidade química, facilidade de fabricação e alta condutividade iônica. Neste trabalho foi obtido o vidro de composição Li1.2Al0.6Ti1.6(PO4)2.9 usando o método tradicional de resfriamento rápido conhecido como Splat Cooling. Vitrocerâmicas de composição igual à do vidro matriz, com diferentes microestruturas, foram obtidas por cristalização controlada mediante tratamentos térmicos simples e duplos. O vidro precursor foi caracterizado por análise química e térmica. Esta última permitiu projetar os tratamentos térmicos de cristalização. Os resultados de difração de raios X (DRX) mostraram a obtenção da estrutura tipo NASICON como fase principal, com presença das fases isolantes AlPO4 e/ou TiO2, que não afetam as propriedades elétricas. O estudo da microestrutura e da condutividade elétrica, usando microscopia eletrônica de varredura (MEV) e espectroscopia de impedância (EI), respectivamente, evidenciaram o aumento da condutividade com o crescimento do tamanho médio do grão, atribuído ao maior contato entre grãos e, provavelmente, a um melhor alinhamento dos canais na estrutura do LiTi2(PO4)3. A máxima condutividade de 1,3 x 10-3 S/cm foi atingida na amostra obtida mediante tratamento térmico simples em 1000 °C durante 20 minutos a qual apresentou um tamanho médio de grão de 350 nm.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarBRMateriaisCristalizaçãoNucleaçãoEspectroscopia de impedânciaTamanho de grãoCristalinidadeENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAObtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturasSynthesis and electrical conductivity of Li1+xAlxTi2-x(PO4)3 glass-ceramic with different microstructuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-1901b2e03-1fc6-4525-8d1a-d61ea51a9dc4info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL3392.pdfapplication/pdf2811446https://repositorio.ufscar.br/bitstream/ufscar/829/1/3392.pdf66678ffcdd5a483cfd0aea8e6f3dcb64MD51THUMBNAIL3392.pdf.jpg3392.pdf.jpgIM Thumbnailimage/jpeg6340https://repositorio.ufscar.br/bitstream/ufscar/829/2/3392.pdf.jpg6d3d27fa95b2c0329401feb20bacc04cMD52ufscar/8292023-09-18 18:30:40.175oai:repositorio.ufscar.br:ufscar/829Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:40Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
dc.title.alternative.eng.fl_str_mv Synthesis and electrical conductivity of Li1+xAlxTi2-x(PO4)3 glass-ceramic with different microstructures
title Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
spellingShingle Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
Semanate, José Luis Narváez
Materiais
Cristalização
Nucleação
Espectroscopia de impedância
Tamanho de grão
Cristalinidade
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
title_full Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
title_fullStr Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
title_full_unstemmed Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
title_sort Obtenção e condutividade elétrica de vitrocerâmica Li1+xAlxTi2-x(PO4)3 com diferentes microestruturas
author Semanate, José Luis Narváez
author_facet Semanate, José Luis Narváez
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9824558997496023
dc.contributor.author.fl_str_mv Semanate, José Luis Narváez
dc.contributor.advisor1.fl_str_mv Rodrigues, Ana Candida Martins
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4499231813051400
dc.contributor.authorID.fl_str_mv 0690a22b-4996-47fe-9013-65b9225efdc9
contributor_str_mv Rodrigues, Ana Candida Martins
dc.subject.por.fl_str_mv Materiais
Cristalização
Nucleação
Espectroscopia de impedância
Tamanho de grão
Cristalinidade
topic Materiais
Cristalização
Nucleação
Espectroscopia de impedância
Tamanho de grão
Cristalinidade
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description Technological advances in portable devices imply not only the development of devices but also the need to enhance their power sources. For instance, cellular phones with high technology incorporating Bluetooth, Infrared, Digital Camera, Games, GPS, Internet Browsing, etc., need high performance rechargeable batteries. Lithium ion-conducting glass-ceramics with NASICONtype structure, based on the Li1+xMxM'2-x(PO4)3 system, where M = Al, Cr, Fe, Ga and M' = Ge, Ti, Hf, are considered good candidates as solid electrolytes in lithium ion batteries due to their chemical stability, easy fabrication and high ionic conductivity. In this work, the Li1+xAlxTi2-x(PO4)3 glass composition was synthesized by the traditional method known as Splat Cooling. Glass-ceramics with the same composition as the precursor glass but with different microstructures were obtained by controlled crystallization, using single and double heat treatments. The parent glass was characterized by chemical and thermal analysis and the latter enabled tailoring of the crystallization heat treatments. X-ray diffraction (XRD) results indicated that the resulting glassceramics exhibit the desired NASICON-type structure as primary phase, as well as the segregation of insulating phases, i.e., AlPO4 and/or TiO2, which do not affect the electrical properties. An examination of the microstructure by scanning electron microscopy (SEM) and measurements of electrical conductivity by impedance spectroscopy (IS), combined with the XRD analysis, indicated that the electrical conductivity of single heat-treated samples increases with the heat treatment temperature and hence with the increase in crystallinity. Samples synthesized by double heat treatment showed increasing electrical conductivity with decreasing nucleation treatment time and consequently with increasing average grain size.
publishDate 2009
dc.date.issued.fl_str_mv 2009-08-21
dc.date.available.fl_str_mv 2011-01-25
2016-06-02T19:12:08Z
dc.date.accessioned.fl_str_mv 2016-06-02T19:12:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SEMANATE, José Luis Narváez. Synthesis and electrical conductivity of Li1+xAlxTi2-x(PO4)3 glass-ceramic with different microstructures. 2009. 111 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/829
identifier_str_mv SEMANATE, José Luis Narváez. Synthesis and electrical conductivity of Li1+xAlxTi2-x(PO4)3 glass-ceramic with different microstructures. 2009. 111 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
url https://repositorio.ufscar.br/handle/ufscar/829
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 901b2e03-1fc6-4525-8d1a-d61ea51a9dc4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/829/1/3392.pdf
https://repositorio.ufscar.br/bitstream/ufscar/829/2/3392.pdf.jpg
bitstream.checksum.fl_str_mv 66678ffcdd5a483cfd0aea8e6f3dcb64
6d3d27fa95b2c0329401feb20bacc04c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136247244685312