Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese

Detalhes bibliográficos
Autor(a) principal: Pinto, Alexandre Henrique
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/6533
Resumo: Zinc selenide (ZnSe) is a semiconductor material, which band gap is about 2.7 eV. It has many applications as blue light emission diode, data storage devices, laser diodes and waveguides optical fibers. Despite these several applications, ZnSe, generally, is synthesized in organic solvents, such as: trioctylphosphine oxide (TOPO), hexadecylamine (HDA) or octadecene (ODE). These synthetic methods are carried out at high temperatures, about 250oC. Moreover, being synthesized in organic media makes these nanoparticles unable to be dispersed in aqueous systems, and consequently, they are unable to be applied in biological media, unless some post preparative procedure is applied. In view those shortcomings, in this work, ZnSe was synthesized in aqueous media, having ZnCl2 as zinc source, NaHSe, as selenium source, which was synthesized from reduction of elemental selenium by sodium borohydride (NaBH4), and L-cisteine as capping agent. Initially, a 22 factorial design was applied. Temperature and pH were the factors studied in this factorial design, aiming to determine the influence of these factors on crystallographic coherence dominium calculated through Scherrer equation. Despite synthesis in aqueous media applies lower temperatures (90 oC), it has some disadvantages, for instance, the generation of some byproducts. Among these byproducts are: trigonal or amorphous elemental selenium and L-cistine, however, sometimes, these compounds can not be tracked through x-ray diffraction (XRD), since they are either amorphous or are below the detection limit of this technique. In this sense, Raman spectroscopy plays an important role in this work, since it is able to track these byproducts in a range of some months. Finally, a simple decantation process was carried out in order to separate these byproducts in different aliquots.
id SCAR_c973d02dae668418a30e32e493bb29e5
oai_identifier_str oai:repositorio.ufscar.br:ufscar/6533
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Pinto, Alexandre HenriqueCamargo, Emerson Rodrigues dehttp://lattes.cnpq.br/7720754304065239http://lattes.cnpq.br/18225085626920284ac0ad7c-550e-467b-9f26-dcb815bf55e92016-06-02T20:36:40Z2012-09-052016-06-02T20:36:40Z2012-07-20PINTO, Alexandre Henrique. Synthesis of zinc selenide (znse) semiconductor nanoparticles in aqueous media and analysis of the byproducts yielded from this synthesis. 2012. 99 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.https://repositorio.ufscar.br/handle/ufscar/6533Zinc selenide (ZnSe) is a semiconductor material, which band gap is about 2.7 eV. It has many applications as blue light emission diode, data storage devices, laser diodes and waveguides optical fibers. Despite these several applications, ZnSe, generally, is synthesized in organic solvents, such as: trioctylphosphine oxide (TOPO), hexadecylamine (HDA) or octadecene (ODE). These synthetic methods are carried out at high temperatures, about 250oC. Moreover, being synthesized in organic media makes these nanoparticles unable to be dispersed in aqueous systems, and consequently, they are unable to be applied in biological media, unless some post preparative procedure is applied. In view those shortcomings, in this work, ZnSe was synthesized in aqueous media, having ZnCl2 as zinc source, NaHSe, as selenium source, which was synthesized from reduction of elemental selenium by sodium borohydride (NaBH4), and L-cisteine as capping agent. Initially, a 22 factorial design was applied. Temperature and pH were the factors studied in this factorial design, aiming to determine the influence of these factors on crystallographic coherence dominium calculated through Scherrer equation. Despite synthesis in aqueous media applies lower temperatures (90 oC), it has some disadvantages, for instance, the generation of some byproducts. Among these byproducts are: trigonal or amorphous elemental selenium and L-cistine, however, sometimes, these compounds can not be tracked through x-ray diffraction (XRD), since they are either amorphous or are below the detection limit of this technique. In this sense, Raman spectroscopy plays an important role in this work, since it is able to track these byproducts in a range of some months. Finally, a simple decantation process was carried out in order to separate these byproducts in different aliquots.O seleneto de zinco (ZnSe) e um material semicondutor, cujo a energia de band gap e igual a 2,7 eV, e que encontra muitas aplicacoes como dispositivos emissor de luz na regiao do azul do espectro visivel, como por exemplo, LEDS na regiao do azul, dispositivos de armazenamento de dados, lasers de diodo e guias de ondas de fibras opticas. Apesar dessa variedade de aplicacoes, o ZnSe, geralmente, e sintetizado em solventes organicos, como: oxido de trioctil fosfina (TOPO), hexadecilamina (HDA) ou octadeceno (ODE). E tais metodos de sinteses sao realizados em altas temperaturas, ou seja, superiores a 250 oC. Alem disso, o fato do ZnSe ser sintetizado em solventes organicos, o torna inapto de ser disperso em solventes aquosos, e consequentemente, em termos de aplicacoes, de serem dispersos em meios biologicos, sem a realizacao de algum procedimento pos sintese. Em vista, dessas limitacoes dos metodos de sintese em meio organico, no presente trabalho, o ZnSe foi sintetizado em meio aquoso, tendo o ZnCl2, como fonte de zinco, o NaHSe, como fonte de selenio, o qual foi sintetizado a partir da reducao do selenio elementar pelo boridreto de sodio (NaBH4), e L-cisteina como agente estabilizante. Inicialmente, foi realizado um planejamento fatorial 22, tendo a temperatura e o pH como fatores, com o objetivo de determinar a influencia dessas variaveis no dominio de coerencia cristalografica, determinado por meio da equacao de Scherrer, para essas nanoparticulas. Apesar, do metodo em meio aquoso aplicado nesse trabalho, empregar baixas temperaturas (90 oC) em comparacao com os metodos em meio organico, ele apresenta algumas desvantagens, por exemplo, a geracao de subprodutos inerentes ao metodo de sintese. Entre esses subprodutos estao, o selenio elementar trigonal, ou amorfo e a L-cistina, entretanto, muitos desses subprodutos nao podem ser determinados por meio da tecnica de difracao de raios-X, pois, ou sao amorfos ou estao abaixo do limite de deteccao da tecnica. Em vista disso, a espectroscopia Raman exerce um papel importante nesse trabalho, demonstrando esses produtos e a sua evolucao na escala de tempo de alguns meses. Por fim, realizou-se um procedimento de decantacao, que permitiu separar, mesmo que de modo nao muito seletivo, alguns desses subprodutos em diferentes aliquotas.Universidade Federal de Minas Geraisapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarBRFísico-químicaSeleneto de zincoSelênio amorfoSelênio trigonalRaman, Espectroscopia deSemicondutoresCIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICASíntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa sínteseSynthesis of zinc selenide (znse) semiconductor nanoparticles in aqueous media and analysis of the byproducts yielded from this synthesisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-15082eee2-7a17-49c1-9a15-2a479b52df0finfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL4463.pdfapplication/pdf4786654https://repositorio.ufscar.br/bitstream/ufscar/6533/1/4463.pdf934363c068a2d46e1dc21c5b15f807e7MD51TEXT4463.pdf.txt4463.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/6533/4/4463.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD54THUMBNAIL4463.pdf.jpg4463.pdf.jpgIM Thumbnailimage/jpeg9315https://repositorio.ufscar.br/bitstream/ufscar/6533/5/4463.pdf.jpg97c628fbb5051bac37bdf3e17d8aa274MD55ufscar/65332023-09-18 18:30:39.499oai:repositorio.ufscar.br:ufscar/6533Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:39Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
dc.title.alternative.eng.fl_str_mv Synthesis of zinc selenide (znse) semiconductor nanoparticles in aqueous media and analysis of the byproducts yielded from this synthesis
title Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
spellingShingle Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
Pinto, Alexandre Henrique
Físico-química
Seleneto de zinco
Selênio amorfo
Selênio trigonal
Raman, Espectroscopia de
Semicondutores
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA
title_short Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
title_full Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
title_fullStr Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
title_full_unstemmed Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
title_sort Síntese de nanopartículas semicondutoras de seleneto de zinco (ZnSe) aquoso e análise dos subprodutos decorrentes dessa síntese
author Pinto, Alexandre Henrique
author_facet Pinto, Alexandre Henrique
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1822508562692028
dc.contributor.author.fl_str_mv Pinto, Alexandre Henrique
dc.contributor.advisor1.fl_str_mv Camargo, Emerson Rodrigues de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7720754304065239
dc.contributor.authorID.fl_str_mv 4ac0ad7c-550e-467b-9f26-dcb815bf55e9
contributor_str_mv Camargo, Emerson Rodrigues de
dc.subject.por.fl_str_mv Físico-química
Seleneto de zinco
Selênio amorfo
Selênio trigonal
Raman, Espectroscopia de
Semicondutores
topic Físico-química
Seleneto de zinco
Selênio amorfo
Selênio trigonal
Raman, Espectroscopia de
Semicondutores
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA
description Zinc selenide (ZnSe) is a semiconductor material, which band gap is about 2.7 eV. It has many applications as blue light emission diode, data storage devices, laser diodes and waveguides optical fibers. Despite these several applications, ZnSe, generally, is synthesized in organic solvents, such as: trioctylphosphine oxide (TOPO), hexadecylamine (HDA) or octadecene (ODE). These synthetic methods are carried out at high temperatures, about 250oC. Moreover, being synthesized in organic media makes these nanoparticles unable to be dispersed in aqueous systems, and consequently, they are unable to be applied in biological media, unless some post preparative procedure is applied. In view those shortcomings, in this work, ZnSe was synthesized in aqueous media, having ZnCl2 as zinc source, NaHSe, as selenium source, which was synthesized from reduction of elemental selenium by sodium borohydride (NaBH4), and L-cisteine as capping agent. Initially, a 22 factorial design was applied. Temperature and pH were the factors studied in this factorial design, aiming to determine the influence of these factors on crystallographic coherence dominium calculated through Scherrer equation. Despite synthesis in aqueous media applies lower temperatures (90 oC), it has some disadvantages, for instance, the generation of some byproducts. Among these byproducts are: trigonal or amorphous elemental selenium and L-cistine, however, sometimes, these compounds can not be tracked through x-ray diffraction (XRD), since they are either amorphous or are below the detection limit of this technique. In this sense, Raman spectroscopy plays an important role in this work, since it is able to track these byproducts in a range of some months. Finally, a simple decantation process was carried out in order to separate these byproducts in different aliquots.
publishDate 2012
dc.date.available.fl_str_mv 2012-09-05
2016-06-02T20:36:40Z
dc.date.issued.fl_str_mv 2012-07-20
dc.date.accessioned.fl_str_mv 2016-06-02T20:36:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PINTO, Alexandre Henrique. Synthesis of zinc selenide (znse) semiconductor nanoparticles in aqueous media and analysis of the byproducts yielded from this synthesis. 2012. 99 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/6533
identifier_str_mv PINTO, Alexandre Henrique. Synthesis of zinc selenide (znse) semiconductor nanoparticles in aqueous media and analysis of the byproducts yielded from this synthesis. 2012. 99 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
url https://repositorio.ufscar.br/handle/ufscar/6533
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 5082eee2-7a17-49c1-9a15-2a479b52df0f
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/6533/1/4463.pdf
https://repositorio.ufscar.br/bitstream/ufscar/6533/4/4463.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/6533/5/4463.pdf.jpg
bitstream.checksum.fl_str_mv 934363c068a2d46e1dc21c5b15f807e7
d41d8cd98f00b204e9800998ecf8427e
97c628fbb5051bac37bdf3e17d8aa274
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136295441432576