Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/8000 |
Resumo: | The use of technology based on Field Programmable Gate Arrays (FPGAs), a reconfigurable technology, has become a frequent object of study. This technique is feasible and a promising application in the development of embedded systems, however, the difficulty in finding a flexible and efficient way to perform such an application is their bigger problem. In this work, a virtual and reconfigurable architecture (AVR) in FPGA for hardware applications is presented using a Genetic Programming Software on the development of an optimal reconfiguration for this AVR, in order to build a hardware capable of performing a given task in an embedded system. This proposal is a simple, flexible and efficient way to achieve appropriate applications in embedded systems, when compared to other reconfigurable hardware techniques. The representation of phenotype of the proposed evolutionary system is based on a bi-dimensional network function elements (EF). The GPLAB tool for MATLAB is used in Genetic Programming, and the solution found by this procedure is converted into a memory mapping to represent the best solution, where it is used to reconfigure the hardware. In the tests, GPLAB found results for logic circuits in a few generations, and for image filters containing efficient solutions, where there was little hardware occupation, especially memory, in the cases this has been presented, with a reduced chromosome size, shows a proposal efficiency. |
id |
SCAR_d583bc88c29c85a7dcdee4c37c1ecb89 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/8000 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Almeida, Manoel Aranda dePedrino, Emerson Carloshttp://lattes.cnpq.br/6481363465527189http://lattes.cnpq.br/2889169146811970f253d693-db0e-4474-8a98-8fd9080dfef62016-10-20T18:28:13Z2016-10-20T18:28:13Z2016-03-04ALMEIDA, Manoel Aranda de. Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8000.https://repositorio.ufscar.br/handle/ufscar/8000The use of technology based on Field Programmable Gate Arrays (FPGAs), a reconfigurable technology, has become a frequent object of study. This technique is feasible and a promising application in the development of embedded systems, however, the difficulty in finding a flexible and efficient way to perform such an application is their bigger problem. In this work, a virtual and reconfigurable architecture (AVR) in FPGA for hardware applications is presented using a Genetic Programming Software on the development of an optimal reconfiguration for this AVR, in order to build a hardware capable of performing a given task in an embedded system. This proposal is a simple, flexible and efficient way to achieve appropriate applications in embedded systems, when compared to other reconfigurable hardware techniques. The representation of phenotype of the proposed evolutionary system is based on a bi-dimensional network function elements (EF). The GPLAB tool for MATLAB is used in Genetic Programming, and the solution found by this procedure is converted into a memory mapping to represent the best solution, where it is used to reconfigure the hardware. In the tests, GPLAB found results for logic circuits in a few generations, and for image filters containing efficient solutions, where there was little hardware occupation, especially memory, in the cases this has been presented, with a reduced chromosome size, shows a proposal efficiency.O uso da tecnologia baseada em Field Programmable Gate Arrays (FPGAs), de forma reconfigurável, para a solução de diversos problemas atuais, tem se tornado um frequente objeto de estudo. Essa técnica é de aplicação viável e promissora na elaboração de sistemas embarcados, porém, a dificuldade em encontrar uma forma flexível e eficiente de realizar tal aplicação é o seu maior problema. Neste trabalho, é apresentada uma arquitetura virtual e reconfigurável (AVR) em FPGA para aplicações em hardware, utilizando um software de Programação Genética na elaboração de uma reconfiguração ótima para esta AVR, de forma a construir um hardware capaz de efetuar uma determinada tarefa em um sistema embarcado. Esta proposta é uma forma simples, flexível e eficiente de realizar aplicações adequadas em sistemas embarcados, quando comparada a outras técnicas de hardware reconfigurável. A representação do fenótipo no sistema evolutivo proposto se baseia em uma rede de elementos de função (EF) bidimensional. A ferramenta GPLAB, para MATLAB, é usada na Programação Genética, e a solução encontrada por esta é convertida em um mapeamento de memória com o cromossomo da melhor solução, onde este é usado para reconfigurar o hardware. Nos testes realizados, a GPLAB encontrou resultados para circuitos lógicos em poucas gerações, e para filtros de imagem encontrou soluções eficientes, onde ocorreu pouca ocupação de hardware, principalmente da memória nos casos apresentados, apresentando um cromossomo de tamanho reduzido, o que demonstra uma boa eficiência da proposta.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarArquitetura virtual reconfigurávelFPGAHardware evolucionárioGPLABProgramação genéticaVirtual Reconfigurable ArchitectureField Programmable Gate ArraysEvolvable HardwareGenetic programmingCartesian genetic programmingEmbedded systemsProgramming embedded systemsDigital Image ProcessingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOSistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbridoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6006008f641ac4-ef66-4fde-b5d9-8a5e4cfacc8ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissMAA.pdfDissMAA.pdfapplication/pdf3325891https://repositorio.ufscar.br/bitstream/ufscar/8000/1/DissMAA.pdf1b4744d48d74943990bed42753cc4b4cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/8000/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissMAA.pdf.txtDissMAA.pdf.txtExtracted texttext/plain148254https://repositorio.ufscar.br/bitstream/ufscar/8000/3/DissMAA.pdf.txt71e5dae37713a343a7afdd1887e80e67MD53THUMBNAILDissMAA.pdf.jpgDissMAA.pdf.jpgIM Thumbnailimage/jpeg9256https://repositorio.ufscar.br/bitstream/ufscar/8000/4/DissMAA.pdf.jpg3c4cb28b01a7d71d1f2571599c442da8MD54ufscar/80002023-09-18 18:31:03.882oai:repositorio.ufscar.br:ufscar/8000TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:03Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
title |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
spellingShingle |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido Almeida, Manoel Aranda de Arquitetura virtual reconfigurável FPGA Hardware evolucionário GPLAB Programação genética Virtual Reconfigurable Architecture Field Programmable Gate Arrays Evolvable Hardware Genetic programming Cartesian genetic programming Embedded systems Programming embedded systems Digital Image Processing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
title_full |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
title_fullStr |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
title_full_unstemmed |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
title_sort |
Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido |
author |
Almeida, Manoel Aranda de |
author_facet |
Almeida, Manoel Aranda de |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2889169146811970 |
dc.contributor.author.fl_str_mv |
Almeida, Manoel Aranda de |
dc.contributor.advisor1.fl_str_mv |
Pedrino, Emerson Carlos |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6481363465527189 |
dc.contributor.authorID.fl_str_mv |
f253d693-db0e-4474-8a98-8fd9080dfef6 |
contributor_str_mv |
Pedrino, Emerson Carlos |
dc.subject.por.fl_str_mv |
Arquitetura virtual reconfigurável FPGA Hardware evolucionário GPLAB Programação genética |
topic |
Arquitetura virtual reconfigurável FPGA Hardware evolucionário GPLAB Programação genética Virtual Reconfigurable Architecture Field Programmable Gate Arrays Evolvable Hardware Genetic programming Cartesian genetic programming Embedded systems Programming embedded systems Digital Image Processing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
Virtual Reconfigurable Architecture Field Programmable Gate Arrays Evolvable Hardware Genetic programming Cartesian genetic programming Embedded systems Programming embedded systems Digital Image Processing |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
The use of technology based on Field Programmable Gate Arrays (FPGAs), a reconfigurable technology, has become a frequent object of study. This technique is feasible and a promising application in the development of embedded systems, however, the difficulty in finding a flexible and efficient way to perform such an application is their bigger problem. In this work, a virtual and reconfigurable architecture (AVR) in FPGA for hardware applications is presented using a Genetic Programming Software on the development of an optimal reconfiguration for this AVR, in order to build a hardware capable of performing a given task in an embedded system. This proposal is a simple, flexible and efficient way to achieve appropriate applications in embedded systems, when compared to other reconfigurable hardware techniques. The representation of phenotype of the proposed evolutionary system is based on a bi-dimensional network function elements (EF). The GPLAB tool for MATLAB is used in Genetic Programming, and the solution found by this procedure is converted into a memory mapping to represent the best solution, where it is used to reconfigure the hardware. In the tests, GPLAB found results for logic circuits in a few generations, and for image filters containing efficient solutions, where there was little hardware occupation, especially memory, in the cases this has been presented, with a reduced chromosome size, shows a proposal efficiency. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-10-20T18:28:13Z |
dc.date.available.fl_str_mv |
2016-10-20T18:28:13Z |
dc.date.issued.fl_str_mv |
2016-03-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALMEIDA, Manoel Aranda de. Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8000. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/8000 |
identifier_str_mv |
ALMEIDA, Manoel Aranda de. Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8000. |
url |
https://repositorio.ufscar.br/handle/ufscar/8000 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
8f641ac4-ef66-4fde-b5d9-8a5e4cfacc8a |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/8000/1/DissMAA.pdf https://repositorio.ufscar.br/bitstream/ufscar/8000/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/8000/3/DissMAA.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/8000/4/DissMAA.pdf.jpg |
bitstream.checksum.fl_str_mv |
1b4744d48d74943990bed42753cc4b4c ae0398b6f8b235e40ad82cba6c50031d 71e5dae37713a343a7afdd1887e80e67 3c4cb28b01a7d71d1f2571599c442da8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715564773769216 |