Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre

Detalhes bibliográficos
Autor(a) principal: Silva, Débora Monteiro Teixeira da
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/15577
Resumo: The use of CO2 as a carbon source in the production of more complex molecules with high added value is a topic that has been gaining ground in academia as the relationship between climate change and the increase in the concentration of CO2 in the atmosphere is confirmed. In this sense, one of the processes widely investigated is the hydrogenation of CO2 via heterogeneous catalysis. One of the most interesting products that can be produced via heterogeneous catalysis is methanol (H3COH). The present work aims to critically review studies that contributed to the development of the field of catalytic hydrogenation of CO2 to methanol on copper-based materials, pointing out the main advances, challenges and promising directions to be followed. It is agreed that the two main mechanisms of methanol synthesis via exclusive hydrogenation of CO2 over copper-based catalysts are (i) the formate route and (ii) the RWGS+CO-hydro route. The development of these routes is strongly related to the interaction between the surface and the intermediate species formed during the synthesis. In the formate route, the first intermediate formed is the formate itself (HCOO*). The formation of this intermediate occurs through the interaction of CO2(g) with a hydride adsorbed to the surface. After this first step, the following hydrogenations are observed: HCOO*→H2COO*→H2COOH→H3CO*→H3COH*→H3COH(g). In the RWGS+CO-hydro route, the first intermediate formed is the carboxyl (COOH*). This species is formed after the hydrogenation of one of the oxygen atoms of the adsorbed CO2. Carboxyl, however, is an unstable species on copper-based catalysts and dissociates quickly, leading to the formation of CO* and OH*. Although the first intermediate in this route is carboxyl, it is a consensus that the key intermediate for methanol production via the RWGS+CO hydro route is CO*. After its formation, CO* can be hydrogenated, leading to methanol synthesis, or desorbed, leading to the formation of CO(g). Pure copper surfaces are excellent RWGS catalysts, however, in these catalysts the CO* formed is easily desorbed, therefore methanol synthesis via RWGS+COhydro is negligible over pure copper. One of the strategies that can be adopted to increase methanol production via the RWGS+CO-hydro route over copper catalysts is the addition of dopants that act to stabilize CO* and the HCO* species, formed in the first hydrogenation of CO*. After the production of CO*, the hydrogenations follow: CO*→HCO*→H2CO→H3CO* → H3COH* → H3COH(g). Recently, studies have shown that the presence of water in small amounts promotes global methanol production. The main results presented in the literature indicate that the water molecule can act as a hydrogen donor species, reducing the activation energy of the processes of formation of O-H bonds and the breaking of the C-O(H) bond. However, in addition to hydrogenating the intermediates of this synthesis, the presence of water in the reaction medium may be related to surface changes, such as increased surface basicity and the formation of oxides.
id SCAR_d865b195961e949d9959fe42d326122b
oai_identifier_str oai:repositorio.ufscar.br:ufscar/15577
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Silva, Débora Monteiro Teixeira daGomes, Janaina Fernandeshttp://lattes.cnpq.br/6718634914051168http://lattes.cnpq.br/04631799022879650e6156bc-6733-47ad-90bf-0fa8bb8267422022-02-09T22:01:28Z2022-02-09T22:01:28Z2021-11-17SILVA, Débora Monteiro Teixeira da. Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre. 2021. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15577.https://repositorio.ufscar.br/handle/ufscar/15577The use of CO2 as a carbon source in the production of more complex molecules with high added value is a topic that has been gaining ground in academia as the relationship between climate change and the increase in the concentration of CO2 in the atmosphere is confirmed. In this sense, one of the processes widely investigated is the hydrogenation of CO2 via heterogeneous catalysis. One of the most interesting products that can be produced via heterogeneous catalysis is methanol (H3COH). The present work aims to critically review studies that contributed to the development of the field of catalytic hydrogenation of CO2 to methanol on copper-based materials, pointing out the main advances, challenges and promising directions to be followed. It is agreed that the two main mechanisms of methanol synthesis via exclusive hydrogenation of CO2 over copper-based catalysts are (i) the formate route and (ii) the RWGS+CO-hydro route. The development of these routes is strongly related to the interaction between the surface and the intermediate species formed during the synthesis. In the formate route, the first intermediate formed is the formate itself (HCOO*). The formation of this intermediate occurs through the interaction of CO2(g) with a hydride adsorbed to the surface. After this first step, the following hydrogenations are observed: HCOO*→H2COO*→H2COOH→H3CO*→H3COH*→H3COH(g). In the RWGS+CO-hydro route, the first intermediate formed is the carboxyl (COOH*). This species is formed after the hydrogenation of one of the oxygen atoms of the adsorbed CO2. Carboxyl, however, is an unstable species on copper-based catalysts and dissociates quickly, leading to the formation of CO* and OH*. Although the first intermediate in this route is carboxyl, it is a consensus that the key intermediate for methanol production via the RWGS+CO hydro route is CO*. After its formation, CO* can be hydrogenated, leading to methanol synthesis, or desorbed, leading to the formation of CO(g). Pure copper surfaces are excellent RWGS catalysts, however, in these catalysts the CO* formed is easily desorbed, therefore methanol synthesis via RWGS+COhydro is negligible over pure copper. One of the strategies that can be adopted to increase methanol production via the RWGS+CO-hydro route over copper catalysts is the addition of dopants that act to stabilize CO* and the HCO* species, formed in the first hydrogenation of CO*. After the production of CO*, the hydrogenations follow: CO*→HCO*→H2CO→H3CO* → H3COH* → H3COH(g). Recently, studies have shown that the presence of water in small amounts promotes global methanol production. The main results presented in the literature indicate that the water molecule can act as a hydrogen donor species, reducing the activation energy of the processes of formation of O-H bonds and the breaking of the C-O(H) bond. However, in addition to hydrogenating the intermediates of this synthesis, the presence of water in the reaction medium may be related to surface changes, such as increased surface basicity and the formation of oxides.O emprego do CO2 como fonte de carbono na produção de moléculas mais complexas e de alto valor agregado é um tema que vem ganhando espaço na academia à medida em que a relação entre mudanças climáticas e o aumento da concentração do CO2 na atmosfera são confirmadas. Nesse sentido, um dos processos amplamente investigados é a hidrogenação do CO2 via catálise heterogênea. Um dos produtos de maior interesse que pode ser produzido via catálise heterogênea é o metanol (H3COH). O presente trabalho tem por objetivo revisar criticamente estudos que contribuíram para o desenvolvimento da área de hidrogenação catalítica do CO2 a metanol sobre materiais à base de cobre, apontar os principais avanços, desafios e direções promissoras a serem seguidas. É consenso que os dois principais mecanismos da síntese de metanol via hidrogenação exclusiva de CO2 sobre catalisadores à base de cobre são (i) a rota do formiato e (ii) a rota RWGS+CO-hidro. O desenvolvimento de uma ou outra rota está fortemente relacionado à interação entre a superfície e as espécies intermediárias formadas ao longo da síntese. Na rota do formiato, o primeiro intermediário formado é o próprio formiato (HCOO*). A formação desse intermediário se dá através da interação do CO2(g) com um hidreto adsorvido à superfície. Após essa primeira etapa seguem-se as hidrogenações: HCOO*→H2COO*→ H2COOH → H3CO* → H3COH* → H3COH(g). Na rota da RWGS+COhidro, o primeiro intermediário formado é a carboxila (COOH*). A carboxila é formada após a hidrogenação de um dos oxigênios do CO2 adsorvido. A carboxila, entretanto, é uma espécie instável sobre catalisadores à base de cobre e se dissocia rapidamente, levando à formação de CO* e OH*. Embora o primeiro intermediário dessa rota seja a carboxila, é consenso que o intermediário chave da produção de metanol via rota RWGS+CO-hidro é o CO*. Após a sua formação, o CO* pode ser hidrogenado, levando à síntese de metanol, ou dessorvido, levando à formação de CO(g). Superfícies de cobre puro são excelentes catalisadores da RWGS, entretanto, nesses catalisadores, o CO* formado é facilmente dessorvido, por isso, a síntese de metanol via RWGS+CO hidro é insignificante sobre cobre puro. Uma das estratégias que podem ser adotadas, visando o aumento da produção de metanol via rota RWGS+CO-hidro sobre catalisadores de cobre, é a adição de dopantes que atuem na estabilização do CO* e da espécie HCO*, formada na primeira hidrogenação do CO*. Após a produção do CO* seguemse as hidrogenações: CO*→HCO*→H2CO→ H3CO* → H3COH* → H3COH(g). Recentemente, estudos têm demonstrado que a presença de água em pequenas quantidades promove a produção global de metanol. Os principais resultados apresentados na literatura indicam que a molécula de água pode atuar como uma espécie doadora de hidrogênio, reduzindo a energia de ativação dos processos de formação de ligações O-H e do rompimento da ligação C-O(H). Entretanto, além de hidrogenar os intermediários dessa síntese, a presença de água no meio reacional pode estar relacionada à modificações superficiais, como o aumento da basicidade da superfície e a formação de óxidos.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosEngenharia Química - EQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMetanolCO2HidrogenaçãoFormiatoRWGS+CO-hidroMethanolHydrogenationFormateRWGS+CO-hydroENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICAEstudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobreStudy of the mechanisms of methanol synthesis via CO2 hydrogenation reaction on copper-based catalystsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis600600fddc4165-018a-480c-943f-382a2f697783reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALESTUDO~1.PDFESTUDO~1.PDFTCC - Débora Monteiro Teixeira da Silvaapplication/pdf3609220https://repositorio.ufscar.br/bitstream/ufscar/15577/1/ESTUDO~1.PDF5bab7d40711ce6b48c5287c8dcd4d05eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15577/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTESTUDO~1.PDF.txtESTUDO~1.PDF.txtExtracted texttext/plain192666https://repositorio.ufscar.br/bitstream/ufscar/15577/3/ESTUDO~1.PDF.txt9a04b02a38b01bae2c7363bf92364be0MD53THUMBNAILESTUDO~1.PDF.jpgESTUDO~1.PDF.jpgIM Thumbnailimage/jpeg7278https://repositorio.ufscar.br/bitstream/ufscar/15577/4/ESTUDO~1.PDF.jpgef22340469b406071cbaa490fc22cc05MD54ufscar/155772023-09-18 18:32:24.731oai:repositorio.ufscar.br:ufscar/15577Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:24Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
dc.title.alternative.eng.fl_str_mv Study of the mechanisms of methanol synthesis via CO2 hydrogenation reaction on copper-based catalysts
title Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
spellingShingle Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
Silva, Débora Monteiro Teixeira da
Metanol
CO2
Hidrogenação
Formiato
RWGS+CO-hidro
Methanol
Hydrogenation
Formate
RWGS+CO-hydro
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
title_short Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
title_full Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
title_fullStr Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
title_full_unstemmed Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
title_sort Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre
author Silva, Débora Monteiro Teixeira da
author_facet Silva, Débora Monteiro Teixeira da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0463179902287965
dc.contributor.author.fl_str_mv Silva, Débora Monteiro Teixeira da
dc.contributor.advisor1.fl_str_mv Gomes, Janaina Fernandes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6718634914051168
dc.contributor.authorID.fl_str_mv 0e6156bc-6733-47ad-90bf-0fa8bb826742
contributor_str_mv Gomes, Janaina Fernandes
dc.subject.por.fl_str_mv Metanol
CO2
Hidrogenação
Formiato
RWGS+CO-hidro
topic Metanol
CO2
Hidrogenação
Formiato
RWGS+CO-hidro
Methanol
Hydrogenation
Formate
RWGS+CO-hydro
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
dc.subject.eng.fl_str_mv Methanol
Hydrogenation
Formate
RWGS+CO-hydro
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
description The use of CO2 as a carbon source in the production of more complex molecules with high added value is a topic that has been gaining ground in academia as the relationship between climate change and the increase in the concentration of CO2 in the atmosphere is confirmed. In this sense, one of the processes widely investigated is the hydrogenation of CO2 via heterogeneous catalysis. One of the most interesting products that can be produced via heterogeneous catalysis is methanol (H3COH). The present work aims to critically review studies that contributed to the development of the field of catalytic hydrogenation of CO2 to methanol on copper-based materials, pointing out the main advances, challenges and promising directions to be followed. It is agreed that the two main mechanisms of methanol synthesis via exclusive hydrogenation of CO2 over copper-based catalysts are (i) the formate route and (ii) the RWGS+CO-hydro route. The development of these routes is strongly related to the interaction between the surface and the intermediate species formed during the synthesis. In the formate route, the first intermediate formed is the formate itself (HCOO*). The formation of this intermediate occurs through the interaction of CO2(g) with a hydride adsorbed to the surface. After this first step, the following hydrogenations are observed: HCOO*→H2COO*→H2COOH→H3CO*→H3COH*→H3COH(g). In the RWGS+CO-hydro route, the first intermediate formed is the carboxyl (COOH*). This species is formed after the hydrogenation of one of the oxygen atoms of the adsorbed CO2. Carboxyl, however, is an unstable species on copper-based catalysts and dissociates quickly, leading to the formation of CO* and OH*. Although the first intermediate in this route is carboxyl, it is a consensus that the key intermediate for methanol production via the RWGS+CO hydro route is CO*. After its formation, CO* can be hydrogenated, leading to methanol synthesis, or desorbed, leading to the formation of CO(g). Pure copper surfaces are excellent RWGS catalysts, however, in these catalysts the CO* formed is easily desorbed, therefore methanol synthesis via RWGS+COhydro is negligible over pure copper. One of the strategies that can be adopted to increase methanol production via the RWGS+CO-hydro route over copper catalysts is the addition of dopants that act to stabilize CO* and the HCO* species, formed in the first hydrogenation of CO*. After the production of CO*, the hydrogenations follow: CO*→HCO*→H2CO→H3CO* → H3COH* → H3COH(g). Recently, studies have shown that the presence of water in small amounts promotes global methanol production. The main results presented in the literature indicate that the water molecule can act as a hydrogen donor species, reducing the activation energy of the processes of formation of O-H bonds and the breaking of the C-O(H) bond. However, in addition to hydrogenating the intermediates of this synthesis, the presence of water in the reaction medium may be related to surface changes, such as increased surface basicity and the formation of oxides.
publishDate 2021
dc.date.issued.fl_str_mv 2021-11-17
dc.date.accessioned.fl_str_mv 2022-02-09T22:01:28Z
dc.date.available.fl_str_mv 2022-02-09T22:01:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Débora Monteiro Teixeira da. Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre. 2021. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15577.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/15577
identifier_str_mv SILVA, Débora Monteiro Teixeira da. Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre. 2021. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15577.
url https://repositorio.ufscar.br/handle/ufscar/15577
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv fddc4165-018a-480c-943f-382a2f697783
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
Engenharia Química - EQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
Engenharia Química - EQ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/15577/1/ESTUDO~1.PDF
https://repositorio.ufscar.br/bitstream/ufscar/15577/2/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/15577/3/ESTUDO~1.PDF.txt
https://repositorio.ufscar.br/bitstream/ufscar/15577/4/ESTUDO~1.PDF.jpg
bitstream.checksum.fl_str_mv 5bab7d40711ce6b48c5287c8dcd4d05e
e39d27027a6cc9cb039ad269a5db8e34
9a04b02a38b01bae2c7363bf92364be0
ef22340469b406071cbaa490fc22cc05
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136401609752576