Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/7988 |
Resumo: | An excellent and potentially efficient route towards storing solar energy is to convert light into chemical energy in the form of chemical bonds, which is a form of artificial photosynthesis. Considering the abundance of H2O on the planet, water splitting is a natural pathway for artificial photosynthesis. Hematite is an n-type semiconductor with high chemical stability in alkaline media and promising material for photoelectrochemical water splitting. This Thesis describes critical parameters involved in the Colloidal Nanocrystals Deposition (CND) process to produce hematite photoanodes with high efficiency for solar-to-hydrogen conversion. In chapter 2, a fundamental study reveals that the interface solid-solid is a parameter that has strong influence on the performance of the photoanode. The gap between the FTO substrate and hematite thin film was observed by HRTEM image and it can be overcome during a sintering stage. In the same chapter, the solid-solid interface analysis was correlated with the photoresponse and it has showed that hematite thin film treated at 1000 oC also improved the response of this photoande. This result was explained based on the grain growth and associated with the mass distribution on the FTO surface. In chapter 3, the CND process was improved using the magnet to assist the nanocrystals deposition and also oxidation of magnetite (Fe3O4) to maghemite (γ- Fe2O3) to avoid the presence of Fe2+. In this approach, Sn4+ was used as a doping element and has showed a significant improve on the photoresponse of the hematite. The STEM-EDS analysis has showed that Sn has ability to segregate on the hematite grain boundary during sintering process, blocking grain growth process. The results showed in chapter 4 were essential to understand the thickness effect on the photocurrent of thin film produced by CND process. In this case, changing the nanocrystals concentration has direct effect on the thickness of the hematite thin film. The FTO roughness also showed significant influence on the orientation of hematite grain along the direction <110>. In this study, it was possible to calculate the maximum theoretical efficiency for the hematite photoanode obtained by this method. The thickness control and homogeneity of the thin film give a great perspective for technological application of this process. The in situ heating TEM demonstrated that nanocrystals has abnormal grain growth and also a superplastic phenomenon, as revealed in chapter 5. In this chapter, Sn was deposited on γ-Fe2O3 impeding atom dislocation on the grain boundary and consequently inhibits the growth process. This experiment was an approach to simulate the sintering process performed in the CND process. The electrocatalyst described in chapter 6, showed low overpotential for OER. The strategy to use a Prussian blue analogue to deposit a thin layer of nickel-iron hexacyanoferrate and convert into oxyhydroxide achieved excellent homogeneity and low overpotential for OER. This result is comparable with IrO2 and RuO2 that are electrocatalysts with high electrochemical performance. Catalyst supports were also evaluated, such as FTO, palladium and PGS. The PGS substrate showed an excellent performance as catalytic support for OER, with similar results of palladium foil. |
id |
SCAR_d867b2e110ab43a218a75c6f6e914ea7 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/7988 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Gonçalves, Ricardo HenriqueLeite, Edson Robertohttp://lattes.cnpq.br/1025598529469393Mallouk, Thomas E.http://lattes.cnpq.br/23851278569210055a9464fa-e136-4f34-a12c-ccdb9eccd89b2016-10-20T18:17:17Z2016-10-20T18:17:17Z2016-05-24GONÇALVES, Ricardo Henrique. Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água. 2016. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7988.https://repositorio.ufscar.br/handle/ufscar/7988An excellent and potentially efficient route towards storing solar energy is to convert light into chemical energy in the form of chemical bonds, which is a form of artificial photosynthesis. Considering the abundance of H2O on the planet, water splitting is a natural pathway for artificial photosynthesis. Hematite is an n-type semiconductor with high chemical stability in alkaline media and promising material for photoelectrochemical water splitting. This Thesis describes critical parameters involved in the Colloidal Nanocrystals Deposition (CND) process to produce hematite photoanodes with high efficiency for solar-to-hydrogen conversion. In chapter 2, a fundamental study reveals that the interface solid-solid is a parameter that has strong influence on the performance of the photoanode. The gap between the FTO substrate and hematite thin film was observed by HRTEM image and it can be overcome during a sintering stage. In the same chapter, the solid-solid interface analysis was correlated with the photoresponse and it has showed that hematite thin film treated at 1000 oC also improved the response of this photoande. This result was explained based on the grain growth and associated with the mass distribution on the FTO surface. In chapter 3, the CND process was improved using the magnet to assist the nanocrystals deposition and also oxidation of magnetite (Fe3O4) to maghemite (γ- Fe2O3) to avoid the presence of Fe2+. In this approach, Sn4+ was used as a doping element and has showed a significant improve on the photoresponse of the hematite. The STEM-EDS analysis has showed that Sn has ability to segregate on the hematite grain boundary during sintering process, blocking grain growth process. The results showed in chapter 4 were essential to understand the thickness effect on the photocurrent of thin film produced by CND process. In this case, changing the nanocrystals concentration has direct effect on the thickness of the hematite thin film. The FTO roughness also showed significant influence on the orientation of hematite grain along the direction <110>. In this study, it was possible to calculate the maximum theoretical efficiency for the hematite photoanode obtained by this method. The thickness control and homogeneity of the thin film give a great perspective for technological application of this process. The in situ heating TEM demonstrated that nanocrystals has abnormal grain growth and also a superplastic phenomenon, as revealed in chapter 5. In this chapter, Sn was deposited on γ-Fe2O3 impeding atom dislocation on the grain boundary and consequently inhibits the growth process. This experiment was an approach to simulate the sintering process performed in the CND process. The electrocatalyst described in chapter 6, showed low overpotential for OER. The strategy to use a Prussian blue analogue to deposit a thin layer of nickel-iron hexacyanoferrate and convert into oxyhydroxide achieved excellent homogeneity and low overpotential for OER. This result is comparable with IrO2 and RuO2 that are electrocatalysts with high electrochemical performance. Catalyst supports were also evaluated, such as FTO, palladium and PGS. The PGS substrate showed an excellent performance as catalytic support for OER, with similar results of palladium foil.A fotosíntese artificial é um caminho potencialmente eficiente para a converte energia solar em energia química, na forma de ligações química. Considerando a abundância de H2O no planeta, a quebra da molécula de água é o caminho natural para fotosíntese artificial. Hematita é um semicondutor tipo-n com alta estabilidade em meio alcalino e um material promissor para fotoeletroquímica da quebra da água. Esta Tese descreve os parâmetros críticos envolvidos no processo de deposição de nanocristais coloidais para produzir um fotoanodo de hematita com alta eficiência para conversão solar para energia ligação do hidrogênio. No capítulo 2, o estudo fundamental revela que a interface sólido-sólido é um parâmetro que tem forte influência na performance do fotoanodo. A lacuna entre o substrato de FTO e o filme fino de hematita foi observado por imagens de HRTEM e posteriormente eliminado no estágio de sinterização. No mesmo capítulo, a análise de interface sólido-sólido foi correlacionada com a fotoresposta e isto mostrou que o filme fino de hematita tratado a 1000 oC teve influência na resposta deste fotoanodo. Este resultado foi explicado com base no crescimento de grão e associado com a distribuição de massa na superfície do FTO. No capítulo 3, o processo CND foi aperfeiçoado usando um ímã para auxiliar a deposição de nanocristais e também a oxidação de magnetita (Fe3O4) para maghemita (γ-Fe2O3) com objetivo de evitar a presença de Fe2+. Nesta abordagem, Sn4+ foi usado como um elemento dopante e tem mostrado uma evolução significante na fotoresposta dos filme finos de hematita. A análise de STEM-EDS tem mostrado que o Sn4+ tem propensão para segregar na contorno de grão da hematita, durante o processo de sinterização, bloqueando o processo de crescimento de grão. Os resultados mostrado no capítulo 4 foram essencial para entender o efeito da espessura na fotocorrente do filme fino produzido pelo processo CND. Neste caso, a variação da concentração de nanocristais tem efeito direto nas espessuras dos filmes finos de hematita. A rugosidade do FTO também mostrou influência significante na orientação do grãos de hematita ao longo da direção <110>. Neste estudo, foi possível calcular a máxima eficiência teórica para os fotoanodos de hematita obtido por este método. O controle de espessura e homogeneidade dos filmes finos possibilitou a abertura de uma perspectiva voltada para aplicação tecnológica deste processo. A microscopia de transmissão de elétrons com estágio de aquecimento in situ demonstrou que os nanocristais tem um crescimento abnormal e também um comportamento superplástico em alta temperatura, como pode ser visto no capítulo 5. Neste experimento, também foi possível observar o efeito do Sn4+ na superfície da γ- Fe2O3, impedindo o deslocamento de átomos no contorno de grão e conseqüentemente inibindo o processo de crescimento. Este experimento foi uma abordagem para simular o processo de sinterização realizado no processo CND. O eletrocatalisador descrito no capítulo 6 mostrou baixo sobrepotencial para OER. A estratégia do uso do análogo do azul da Prússia para depositar uma camada fina de hexacianoferrato de níquel e ferro e convertê-los a oxihidróxido alcançou uma excelente homogeneidade e baixo sobrepotencial para OER. Este resultado é comparável com IrO2 e RuO2 que são os eletrocatalisadores com alta performance eletroquímica. Os suportes catalíticos também foram avaliados, tal como o FTO, folha de paládio e PGS. O substrato de PGS mostrou excelente performance com suporte catalítico para OER, com resultados similares a folha de paládio.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarFotoeletroquímicaNanocristaisHematitaCIENCIAS EXATAS E DA TERRA::QUIMICADeposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da águaColloidal nanocrystals deposition: from the synthesis to the application in photoeletrochemistry water splittinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006009c25e6a7-a2cd-4058-97ed-441bc2793123info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7988/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52ORIGINALTeseRHG.pdfTeseRHG.pdfapplication/pdf104284772https://repositorio.ufscar.br/bitstream/ufscar/7988/3/TeseRHG.pdf10f8452cf8c48b158374c1e11c5fc7d2MD53TEXTTeseRHG.pdf.txtTeseRHG.pdf.txtExtracted texttext/plain196293https://repositorio.ufscar.br/bitstream/ufscar/7988/4/TeseRHG.pdf.txt4eab74942cb92c831ccc55bac45a3486MD54THUMBNAILTeseRHG.pdf.jpgTeseRHG.pdf.jpgIM Thumbnailimage/jpeg8617https://repositorio.ufscar.br/bitstream/ufscar/7988/5/TeseRHG.pdf.jpg9496dff906d36de372be6cc80c572f4dMD55ufscar/79882023-09-18 18:31:06.703oai:repositorio.ufscar.br:ufscar/7988TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:06Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
dc.title.alternative.eng.fl_str_mv |
Colloidal nanocrystals deposition: from the synthesis to the application in photoeletrochemistry water splitting |
title |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
spellingShingle |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água Gonçalves, Ricardo Henrique Fotoeletroquímica Nanocristais Hematita CIENCIAS EXATAS E DA TERRA::QUIMICA |
title_short |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
title_full |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
title_fullStr |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
title_full_unstemmed |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
title_sort |
Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água |
author |
Gonçalves, Ricardo Henrique |
author_facet |
Gonçalves, Ricardo Henrique |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2385127856921005 |
dc.contributor.author.fl_str_mv |
Gonçalves, Ricardo Henrique |
dc.contributor.advisor1.fl_str_mv |
Leite, Edson Roberto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1025598529469393 |
dc.contributor.advisor-co1.fl_str_mv |
Mallouk, Thomas E. |
dc.contributor.authorID.fl_str_mv |
5a9464fa-e136-4f34-a12c-ccdb9eccd89b |
contributor_str_mv |
Leite, Edson Roberto Mallouk, Thomas E. |
dc.subject.por.fl_str_mv |
Fotoeletroquímica Nanocristais Hematita |
topic |
Fotoeletroquímica Nanocristais Hematita CIENCIAS EXATAS E DA TERRA::QUIMICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::QUIMICA |
description |
An excellent and potentially efficient route towards storing solar energy is to convert light into chemical energy in the form of chemical bonds, which is a form of artificial photosynthesis. Considering the abundance of H2O on the planet, water splitting is a natural pathway for artificial photosynthesis. Hematite is an n-type semiconductor with high chemical stability in alkaline media and promising material for photoelectrochemical water splitting. This Thesis describes critical parameters involved in the Colloidal Nanocrystals Deposition (CND) process to produce hematite photoanodes with high efficiency for solar-to-hydrogen conversion. In chapter 2, a fundamental study reveals that the interface solid-solid is a parameter that has strong influence on the performance of the photoanode. The gap between the FTO substrate and hematite thin film was observed by HRTEM image and it can be overcome during a sintering stage. In the same chapter, the solid-solid interface analysis was correlated with the photoresponse and it has showed that hematite thin film treated at 1000 oC also improved the response of this photoande. This result was explained based on the grain growth and associated with the mass distribution on the FTO surface. In chapter 3, the CND process was improved using the magnet to assist the nanocrystals deposition and also oxidation of magnetite (Fe3O4) to maghemite (γ- Fe2O3) to avoid the presence of Fe2+. In this approach, Sn4+ was used as a doping element and has showed a significant improve on the photoresponse of the hematite. The STEM-EDS analysis has showed that Sn has ability to segregate on the hematite grain boundary during sintering process, blocking grain growth process. The results showed in chapter 4 were essential to understand the thickness effect on the photocurrent of thin film produced by CND process. In this case, changing the nanocrystals concentration has direct effect on the thickness of the hematite thin film. The FTO roughness also showed significant influence on the orientation of hematite grain along the direction <110>. In this study, it was possible to calculate the maximum theoretical efficiency for the hematite photoanode obtained by this method. The thickness control and homogeneity of the thin film give a great perspective for technological application of this process. The in situ heating TEM demonstrated that nanocrystals has abnormal grain growth and also a superplastic phenomenon, as revealed in chapter 5. In this chapter, Sn was deposited on γ-Fe2O3 impeding atom dislocation on the grain boundary and consequently inhibits the growth process. This experiment was an approach to simulate the sintering process performed in the CND process. The electrocatalyst described in chapter 6, showed low overpotential for OER. The strategy to use a Prussian blue analogue to deposit a thin layer of nickel-iron hexacyanoferrate and convert into oxyhydroxide achieved excellent homogeneity and low overpotential for OER. This result is comparable with IrO2 and RuO2 that are electrocatalysts with high electrochemical performance. Catalyst supports were also evaluated, such as FTO, palladium and PGS. The PGS substrate showed an excellent performance as catalytic support for OER, with similar results of palladium foil. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-10-20T18:17:17Z |
dc.date.available.fl_str_mv |
2016-10-20T18:17:17Z |
dc.date.issued.fl_str_mv |
2016-05-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GONÇALVES, Ricardo Henrique. Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água. 2016. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7988. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/7988 |
identifier_str_mv |
GONÇALVES, Ricardo Henrique. Deposição de nanocristais coloidais: da síntese à aplicação na fotoeletroquímica da oxidação da água. 2016. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7988. |
url |
https://repositorio.ufscar.br/handle/ufscar/7988 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
9c25e6a7-a2cd-4058-97ed-441bc2793123 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química - PPGQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/7988/2/license.txt https://repositorio.ufscar.br/bitstream/ufscar/7988/3/TeseRHG.pdf https://repositorio.ufscar.br/bitstream/ufscar/7988/4/TeseRHG.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/7988/5/TeseRHG.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d 10f8452cf8c48b158374c1e11c5fc7d2 4eab74942cb92c831ccc55bac45a3486 9496dff906d36de372be6cc80c572f4d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715565772013568 |